stringtranslate.com

Doléans-Dade exponential

In stochastic calculus, the Doléans-Dade exponential or stochastic exponential of a semimartingale X is the unique strong solution of the stochastic differential equation where denotes the process of left limits, i.e., .

The concept is named after Catherine Doléans-Dade.[1] Stochastic exponential plays an important role in the formulation of Girsanov's theorem and arises naturally in all applications where relative changes are important since measures the cumulative percentage change in .

Notation and terminology

Process obtained above is commonly denoted by . The terminology "stochastic exponential" arises from the similarity of to the natural exponential of : If X is absolutely continuous with respect to time, then Y solves, path-by-path, the differential equation , whose solution is .

General formula and special cases

Properties

Useful identities

Yor's formula:[2] for any two semimartingales and one has

Applications

Derivation of the explicit formula for continuous semimartingales

For any continuous semimartingale X, take for granted that is continuous and strictly positive. Then applying Itō's formula with ƒ(Y) = log(Y) gives

Exponentiating with gives the solution

This differs from what might be expected by comparison with the case where X has finite variation due to the existence of the quadratic variation term [X] in the solution.

See also

References

  1. ^ Doléans-Dade, C. (1970). "Quelques applications de la formule de changement de variables pour les semimartingales". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete [Probability Theory and Related Fields] (in French). 16 (3): 181–194. doi:10.1007/BF00534595. ISSN 0044-3719. S2CID 118181229.
  2. ^ Yor, Marc (1976), "Sur les integrales stochastiques optionnelles et une suite remarquable de formules exponentielles", Séminaire de Probabilités X Université de Strasbourg, Lecture Notes in Mathematics, vol. 511, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 481–500, doi:10.1007/bfb0101123, ISBN 978-3-540-07681-0, S2CID 118228097, retrieved 2021-12-14