stringtranslate.com

Хиллель Фюрстенберг

Хиллель «Гарри» Фюрстенберг ( иврит : הלל (הארי) פורסטנברג ) (родился 29 сентября 1935 года) — американо-израильский математик немецкого происхождения, почётный профессор Еврейского университета в Иерусалиме . Он является членом Израильской академии наук и гуманитарных наук и Национальной академии наук США , лауреатом премии Абеля и премии Вольфа по математике . Он известен своим применением теории вероятностей и методов эргодической теории к другим областям математики, включая теорию чисел и группы Ли .

Биография

Фюрстенберг родился в семье немецких евреев в нацистской Германии в 1935 году (первоначально его звали «Фюрстенберг»). В 1939 году, вскоре после Хрустальной ночи , его семья бежала в Соединенные Штаты и поселилась в районе Вашингтон-Хайтс в Нью-Йорке, спасаясь от Холокоста . [ 2] Он учился в Талмудической академии Марши Стерн , а затем в Университете Йешива , где он завершил свое обучение на степень бакалавра и магистра наук в возрасте 20 лет в 1955 году. Фюрстенберг опубликовал несколько работ в качестве студента, включая « Заметку об одном типе неопределенной формы » (1953) и « О бесконечности простых чисел » (1955). Обе работы были опубликованы в American Mathematical Monthly , последняя предоставила топологическое доказательство знаменитой теоремы Евклида о том, что существует бесконечно много простых чисел.

Академическая карьера

Фюрстенберг продолжил докторскую работу в Принстонском университете под руководством Саломона Бохнера . В 1958 году он получил докторскую степень за диссертацию «Теория предсказания». [3]

С 1959 по 1960 год Фюрстенберг работал преподавателем CLE Moore в Массачусетском технологическом институте . [4]

Фюрстенберг получил свою первую работу в качестве доцента в 1961 году в Университете Миннесоты . Фюрстенберг был повышен до должности штатного профессора в Миннесоте, но переехал в Израиль в 1965 году, чтобы присоединиться к Институту математики Эйнштейна Еврейского университета . Он вышел на пенсию из Еврейского университета в 2003 году. [5] Фюрстенберг является членом Консультативного комитета Центра передовых исследований в области математики в Университете Бен-Гуриона в Негеве . [3]

В 2003 году Еврейский университет и Университет имени Бен-Гуриона провели совместную конференцию, чтобы отпраздновать уход Фюрстенберга на пенсию. Четырехдневная конференция по вероятности в математике имела подзаголовок Furstenfest 2003 и включала четыре дня лекций. [6]

В 1993 году Фюрстенберг получил премию Израиля, а в 2007 году — премию Вольфа по математике. Он является членом Израильской академии наук и гуманитарных наук (избран в 1974 году), [7] Американской академии искусств и наук (международный почетный член с 1995 года) [8] и Национальной академии наук США (избрана в 1989 году). [9]

Фюрстенберг обучил поколения студентов, среди которых Александр Любоцкий , Юваль Перес , Тамар Циглер , Шахар Мозес и Виталий Бергельсон . [10]

Научные достижения

Фюрстенберг привлек к себе внимание на раннем этапе своей карьеры, представив в 1955 году новаторское топологическое доказательство бесконечности простых чисел .

В серии статей, начавшихся в 1963 году с A Poisson Formula for Semi-Simple Lie Groups , он продолжил утверждать себя как новаторский мыслитель. Его работа, показывающая, что поведение случайных блужданий на группе неразрывно связано со структурой группы, что привело к тому, что сейчас называется границей Фюрстенберга , оказала огромное влияние на изучение решеток и групп Ли. [5]

В своей статье 1967 года « Дизъюнктность в эргодической теории, минимальные множества и проблема диофантовых приближений » Фюрстенберг ввел понятие «дизъюнктности», понятие в эргодических системах, которое аналогично взаимной простоте для целых чисел. Оказалось, что это понятие имеет приложения в таких областях, как теория чисел, фракталы, обработка сигналов и электротехника.

В 1977 году он дал переформулировку эргодической теории, а затем и доказательство теоремы Семереди . Это описано в его статье 1977 года « Эргодическое поведение диагональных мер и теорема Семереди об арифметических прогрессиях» . Фюрстенберг использовал методы эргодической теории, чтобы доказать знаменитый результат Эндре Семереди, который утверждает, что любое подмножество целых чисел с положительной верхней плотностью содержит произвольно большие арифметические прогрессии. Его идеи затем привели к более поздним важным результатам, таким как доказательство Бена Грина и Теренса Тао того, что последовательность простых чисел включает произвольно большие арифметические прогрессии.

В начале 1970-х годов он доказал уникальную эргодичность орициклических потоков на компактных гиперболических римановых поверхностях . Граница Фюрстенберга и компактификация Фюрстенберга локально симметричного пространства названы в его честь, как и теорема Фюрстенберга–Саркези в аддитивной теории чисел .

Личная жизнь

В 1958 году Фюрстенберг женился на Рошель (урожденной) Коэн, журналистке и литературном критике. У них пятеро детей и шестнадцать внуков. [5]

Награды

Избранные публикации

Смотрите также

Ссылки

  1. ^ Бергельсон, Виталий; Гласнер, Эли; Вайс, Бенджамин (2024). «Работа Хиллеля Фюрстенберга и ее влияние на современную математику». Премия Абеля 2018-2022 . С. 399–431. doi :10.1007/978-3-031-33973-8_11. ISBN 978-3-031-33972-1.
  2. ^ Чанг, Кеннет. «Премию Абеля по математике разделили два первопроходца в теории вероятностей и динамике Хиллель Фюрстенберг, 84 года, и Грегори Маргулис, 74 года, оба отставные профессора, разделили математический эквивалент Нобелевской премии». Архивировано 18 марта 2020 г. в Wayback Machine , The New York Times , 18 марта 2020 г. Доступно 18 марта 2020 г. «Доктор Фюрстенберг родился в Берлине в 1935 году. Его семья, которая была еврейской, смогла покинуть Германию незадолго до начала Второй мировой войны и перебралась в Соединенные Штаты, поселившись в Нью-Йорке в районе Вашингтон-Хайтс на Манхэттене».
  3. ^ ab O'Connor, John J.; Robertson, Edmund F. "Hillel Furstenberg". Архив истории математики MacTutor . Получено 22 марта 2020 г.
  4. ^ Кеннет Чанг (18 марта 2020 г.). «Премия Абеля по математике разделена между двумя первопроходцами теории вероятностей и динамики». New York Times . Получено 22 марта 2020 г.
  5. ^ abc "Биография Хиллеля Фюрстенберга". Премия Абеля . Архивировано из оригинала 2 июня 2020 г. Получено 22 марта 2020 г.
  6. ^ "Конференция по вероятности в математике. Furnstenfest 2003". Университет Бен-Гуриона . Получено 22 марта 2020 г.
  7. ^ "Проф. Хиллель Фюрстенберг". Израильская академия наук и гуманитарных наук . Получено 22 марта 2020 г.
  8. ^ "Dr Hillel Furstenberg". Американская академия искусств и наук . Получено 22 марта 2020 г.
  9. ^ "Справочник участников:Hillel Furstenberg". Национальная академия наук США . Получено 22 марта 2020 г.
  10. ^ "Гарри Фюрстенберг – Проект генеалогии математики". www.genealogy.math.ndsu.nodak.edu . Получено 19 марта 2020 г. .
  11. ^ "The Rothschild Prize". Яд Ханадив . Получено 19 июля 2020 г.
  12. ^ "Официальный сайт Премии Израиля – Лауреаты 1993 года (на иврите)". Архивировано из оригинала 12 октября 2014 года.
  13. ^ "Prize Winners – Harvey Prize". Technion – Israel Institute of Technology . Получено 22 марта 2020 г.
  14. ^ "Фюрстенберг и Смейл получили премию Вольфа 2006–2007" (PDF) . Notices of the American Mathematical Society . 54 (4): 631–632. 2007.
  15. ^ "Лекции памяти Турана". Архивировано из оригинала 21 сентября 2019 г. Получено 14 сентября 2019 г.
  16. ^ Чанг, Кеннет (18 марта 2020 г.). «Премия Абеля по математике разделена между двумя первопроходцами теории вероятностей и динамики». The New York Times . ISSN  0362-4331. Архивировано из оригинала 18 марта 2020 г. Получено 18 марта 2020 г.
  17. ^ Фюрстенберг, Гарри; Фюрстенберг, Хиллель (21 августа 1960 г.). Стационарные процессы и теория предсказания. Princeton University Press. ISBN 0691080410.
  18. ^ Masani, P. (1963). "Обзор: Стационарные процессы и теория предсказания, Х. Фюрстенберг". Bull. Amer. Math. Soc . 69 (2): 195–207. doi : 10.1090/s0002-9904-1963-10910-6 . Архивировано из оригинала 17 мая 2014 г. Получено 24 сентября 2012 г.
  19. ^ Фюрстенберг, Гарри; Фюрстенберг, Хиллель (1981). Повторяемость в эргодической теории и комбинаторной теории чисел. Princeton University Press. ISBN 9780691082691.
  20. ^ Петерсен, Карл (1986). «Обзор: Рекуррентность в эргодической теории и комбинаторной теории чисел, Х. Фюрстенберг». Bull. Amer. Math. Soc. (NS) . 14 (2): 305–309. doi : 10.1090/s0273-0979-1986-15451-0 . Архивировано из оригинала 17 мая 2014 г. Получено 24 сентября 2012 г.

Внешние ссылки