stringtranslate.com

Закон смещения Вина

Излучение черного тела как функция длины волны для различных температур. Каждая температурная кривая достигает максимума на разной длине волны, и закон Вина описывает сдвиг этого пика.
Существует множество способов связать характерную длину волны или частоту со спектром излучения черного тела Планка. Каждый из этих показателей одинаково масштабируется в зависимости от температуры — принцип, называемый законом смещения Вина. Для разных версий закона константа пропорциональности различается, поэтому для данной температуры не существует уникальной характеристической длины волны или частоты.

Закон смещения Вина гласит, что кривая излучения черного тела для разных температур будет иметь максимум на разных длинах волн , которые обратно пропорциональны температуре. Сдвиг этого пика является прямым следствием закона излучения Планка , который описывает спектральную яркость или интенсивность излучения черного тела как функцию длины волны при любой заданной температуре. Однако оно было открыто Вильгельмом Вином за несколько лет до того, как Макс Планк разработал это более общее уравнение и описывает весь сдвиг спектра излучения черного тела в сторону более коротких волн при повышении температуры.

Формально версия закона смещения Вина для длины волны утверждает, что спектральная яркость излучения черного тела на единицу длины волны достигает максимума на длине волны, определяемой формулой:

Tабсолютная температураbконстанта пропорциональностиконстантой смещения Вина2,897 771 955 ... × 10-3  м⋅К1 ] [2]b ≈ 2898 мкм⋅К

Это обратная зависимость между длиной волны и температурой. Таким образом, чем выше температура, тем короче или меньше длина волны теплового излучения. Чем ниже температура, тем длиннее или больше длина волны теплового излучения. Что касается видимого излучения, горячие объекты излучают более синий свет, чем холодные объекты. Если рассматривать пик излучения черного тела на единицу частоты или на пропорциональную полосу пропускания, необходимо использовать другую константу пропорциональности. Однако форма закона остается прежней: пиковая длина волны обратно пропорциональна температуре, а пиковая частота прямо пропорциональна температуре.

Существуют и другие формулировки закона смещения Вина, которые параметризуются относительно других величин. Для этих альтернативных формулировок форма зависимости аналогична, но константа пропорциональности b отличается.

Закон смещения Вина можно назвать «законом Вина», этот термин также используется для аппроксимации Вина .

В «законе смещения Вина» слово «смещение» относится к тому, как графики зависимости интенсивности от длины волны кажутся смещенными (смещенными) для разных температур.

Примеры

Кузнецы работают с железом , когда оно достаточно горячее, чтобы испускать явно видимое тепловое излучение .
Согласно закону Вина, цвет звезды определяется ее температурой. В созвездии Ориона можно сравнить Бетельгейзе ( Т  ≈ 3300 К, вверху слева), Ригель ( Т  = 12100 К, внизу справа), Беллатрису ( Т  = 22000 К, вверху справа) и Минтаку ( Т  = 31800 К, крайняя правая из трех «звезд пояса» посередине).

Закон смещения Вина применим к некоторым повседневным ситуациям:

Открытие

Закон назван в честь Вильгельма Вина , который вывел его в 1893 году на основе термодинамического аргумента. [5] Вин рассмотрел адиабатическое расширение полости, содержащей световые волны в тепловом равновесии. Используя принцип Доплера , он показал, что при медленном расширении или сжатии энергия света, отражающегося от стенок, меняется точно так же, как и частота. Общий принцип термодинамики заключается в том, что состояние теплового равновесия при очень медленном расширении остается в тепловом равновесии.

Сам Вин теоретически вывел этот закон в 1893 году, следуя термодинамическим рассуждениям Больцмана. Ранее его наблюдал, по крайней мере полуколичественно, американский астроном Лэнгли . Этот сдвиг вверх знаком каждому: когда железо нагревается в огне, первое видимое излучение (около 900 К) — темно-красное, видимый свет самой низкой частоты. Дальнейшее увеличение приводит к изменению цвета на оранжевый, затем на желтый и, наконец, на синий при очень высоких температурах (10 000 К и более), при которых пик интенсивности излучения переместился за пределы видимого диапазона в ультрафиолет. [6]

Адиабатический принцип позволил Вину прийти к выводу, что для каждой моды адиабатический инвариант энергия/частота является только функцией другого адиабатического инварианта, частоты/температуры. Отсюда он вывел «сильную версию» закона смещения Вина: утверждение о том, что спектральная яркость черного тела пропорциональна некоторой функции F одной переменной. Современный вариант вывода Вина можно найти в учебнике Ванье [7] и в статье Э. Бэкингема [8]

Следствием этого является то, что форма функции излучения черного тела (которая еще не была понята) будет смещаться пропорционально частоте (или обратно пропорционально длине волны) с температурой. Когда Макс Планк позже сформулировал правильную функцию излучения черного тела, она явно не включала константу Вина . Скорее, была создана постоянная Планка и введена в его новую формулу. Из постоянной Планка и постоянной Больцмана можно получить постоянную Вина .

Пик различается в зависимости от параметризации

Результаты в таблицах выше суммируют результаты из других разделов этой статьи. Процентили — это процентили спектра черного тела Планка. [9] Только 25 процентов энергии в спектре черного тела связано с длинами волн короче значения, определяемого версией закона Вина для пиковой длины волны.

Спектр черного тела Планка, параметризованный длиной волны, дробной шириной полосы (логарифм длины волны или логарифм частоты) и частотой для температуры 6000 К.

Обратите внимание, что для данной температуры разные параметризации подразумевают разные максимальные длины волн. В частности, пик интенсивности на единицу частоты приходится на длину волны, отличную от кривой интенсивности на единицу длины волны. [10]

Например, используя = 6000 K (5730 °C; 10340 °F) и параметризацию по длине волны, длина волны для максимального спектрального излучения составит = 482,962 нм с соответствующей частотой = 620,737 ТГц . Для той же температуры, но с параметризацией по частоте, частота максимального спектрального излучения равна = 352,735 ТГц с соответствующей длиной волны = 849,907 нм .

Эти функции представляют собой функции плотности излучения , которые представляют собой функции плотности вероятности , масштабированные для определения единиц измерения излучения. Функция плотности имеет разную форму для разных параметризаций, в зависимости от относительного растяжения или сжатия абсциссы, которая измеряет изменение плотности вероятности относительно линейного изменения данного параметра. Поскольку длина волны и частота имеют обратную связь, они представляют собой существенно нелинейные сдвиги плотности вероятности относительно друг друга.

Общая яркость представляет собой интеграл распределения по всем положительным значениям и является инвариантным для данной температуры при любой параметризации. Кроме того, для данной температуры излучение, состоящее из всех фотонов между двумя длинами волн, должно быть одинаковым независимо от того, какое распределение вы используете. Другими словами, интегрирование распределения длин волн от до приведет к тому же значению, что и интегрирование распределения частот между двумя частотами, которые соответствуют и , а именно от до . [11] Однако форма распределения зависит от параметризации, и для другой параметризации распределение обычно будет иметь другую пиковую плотность, как показывают эти расчеты. [10]

Однако важным моментом закона Вина является то, что любой такой маркер длины волны, включая медианную длину волны (или, альтернативно, длину волны, ниже которой возникает любой указанный процент излучения), пропорционален обратной величине температуры. То есть форма распределения для данной параметризации масштабируется в зависимости от температуры и преобразуется в зависимости от температуры и может быть рассчитана один раз для канонической температуры, а затем соответствующим образом сдвинута и масштабирована для получения распределения для другой температуры. Это является следствием строгости закона Вина.

Частотно-зависимая формулировка

Для спектрального потока, рассматриваемого на единицу частотыгерцах ), закон смещения Вина описывает пиковое излучение на оптической частоте, определяемое следующим образом: [12]

=2,821 439 372 122 078 893 ... [13] k постоянная Больцмана h постоянная Планка T

Вывод из закона Планка

Параметризация по длине волны

Закон Планка для спектра излучения черного тела предсказывает закон смещения Вина и может использоваться для численной оценки константы, связывающей температуру и значение пикового параметра для любой конкретной параметризации. Обычно используется параметризация длины волны, и в этом случае спектральная яркость черного тела (мощность на излучающую площадь на телесный угол) равна:

Дифференцирование по и присвоение производной равной нулю дает:

Определив:

x

Это уравнение решается

функции Ламберта W 4,965 114 231 744 276 303 ...[14] [15] [2]
(2,897 771 955 185 172 661 ... мм⋅К ) .

Параметризация по частоте

Другая распространенная параметризация — по частоте . Вывод, дающий значение пикового параметра, аналогичен, но начинается с формы закона Планка как функции частоты :

Предыдущий процесс с использованием этого уравнения дает:

W-[16]
=2.821 439 372 122 078 893 ...[13]

Решение для результатов: [12]

(0,058 789 257 576 468 249 46 ... ТГц⋅К -1 ) .

Параметризация логарифмом длины волны или частоты

Использование неявного уравнения дает пик функции плотности спектральной яркости, выраженный в параметре яркость на пропорциональную полосу пропускания . (То есть плотность излучения на полосу частот, пропорциональная самой частоте, которую можно рассчитать, рассматривая бесконечно малые интервалы (или, что то же самое ), а не самой частоты.) Это, возможно, более интуитивный способ представления «длины волны пикового излучения». ". Это дает =3,920 690 394 872 886 343 ... . [17]

Средняя энергия фотонов как альтернативная характеристика

Другой способ охарактеризовать распределение излучения — через среднюю энергию фотонов [10]

Критика

Марр и Уилкин (2012) утверждают, что широкое преподавание закона смещения Вина на вводных курсах нежелательно и лучше заменить его альтернативным материалом. Они утверждают, что преподавание права проблематично, потому что:

  1. кривая Планка слишком широка, чтобы пик можно было выделить или считать значимым;
  2. расположение пика зависит от параметризации, и они цитируют несколько источников, которые сходятся во мнении, что «обозначение любого пика функции не имеет смысла и, следовательно, на него следует преуменьшать значение»;
  3. закон не используется для определения температур на реальной практике, вместо этого используется прямое использование функции Планка .

Они предлагают представить среднюю энергию фотонов вместо закона смещения Вина, как более физически значимый индикатор изменений, происходящих с изменением температуры. В связи с этим они рекомендуют обсуждать среднее число фотонов в секунду в связи с законом Стефана-Больцмана . Они рекомендуют отображать спектр Планка как «спектральную плотность энергии на дробное распределение полосы пропускания», используя логарифмическую шкалу длины волны или частоты. [10]

Смотрите также

Рекомендации

  1. ^ «Значение CODATA 2018: константа закона смещения длины волны Вина» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . 20 мая 2019 года . Проверено 20 мая 2019 г.
  2. ^ ab Слоан, Нью-Джерси (ред.). «Последовательность A081819 (Десятичное разложение константы закона смещения длины волны Вина)». Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС.
  3. ^ Уокер, Дж. Основы физики, 8-е изд., Джон Вили и сыновья, 2008, с. 891. ISBN 9780471758013
  4. ^ Фейнман, Р; Лейтон, Р; Сэндс, М. Фейнмановские лекции по физике, том. 1, стр. 35-2 – 35-3. ISBN 0201510030
  5. ^ Мехра, Дж .; Рехенберг, Х. (1982). Историческое развитие квантовой теории . Нью-Йорк: Springer-Verlag. Глава 1. ISBN 978-0-387-90642-3.
  6. ^ «1.1: Излучение черного тела невозможно объяснить классически» . 18 марта 2020 г.
  7. ^ Ваннье, GH (1987) [1966]. Статистическая физика . Дуврские публикации . Глава 10.2. ISBN 978-0-486-65401-0. ОСЛК  15520414.
  8. ^ Бэкингем, Э. (1912). «О выводе закона Вина о смещении» (PDF) . Бюллетень Бюро стандартов . 8 (3): 545–557. Архивировано из оригинала (PDF) 6 декабря 2020 года . Проверено 18 октября 2020 г.
  9. ^ Лоуэн, АН; Бланш, Г. (1940). «Таблицы излучения Планка и фотонных функций». Журнал Оптического общества Америки . 30 (2): 70. Бибкод : 1940JOSA...30...70L. дои : 10.1364/JOSA.30.000070.
  10. ^ abcd Марр, Джонатан М.; Уилкин, Фрэнсис П. (2012). «Лучшее представление закона излучения Планка». Американский журнал физики . 80 (5): 399. arXiv : 1109.3822 . Бибкод : 2012AmJPh..80..399M. дои : 10.1119/1.3696974. S2CID  10556556.
  11. ^ Кинг, Фрэнк (2003). «Вероятность 2003-04, Глава 11, ПРЕОБРАЗОВАНИЕ ФУНКЦИЙ ПЛОТНОСТИ». Кембриджский университет.
  12. ^ ab Слоан, Нью-Джерси (ред.). «Последовательность A357838 (Десятичное разложение константы закона смещения частоты Вина)». Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС.
  13. ^ ab Слоан, Нью-Джерси (ред.). «Последовательность A194567». Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС.
  14. ^ Слоан, Нью-Джерси (ред.). «Последовательность A094090». Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС.
  15. ^ Дас, Биман (2002). «Получение закона смещения Вина из закона излучения Планка». Учитель физики . 40 (3): 148–149. Бибкод : 2002PhTea..40..148D. дои : 10.1119/1.1466547.
  16. ^ Уильямс, Брайан Уэсли (2014). «Конкретная математическая форма закона смещения Вина как ν max / T = константа». Журнал химического образования . 91 (5): 623. Бибкод : 2014JChEd..91..623W. дои : 10.1021/ed400827f.
  17. ^ Слоан, Нью-Джерси (ред.). «Последовательность A256501». Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС.

дальнейшее чтение

Внешние ссылки