stringtranslate.com

Peephole optimization

Peephole optimization is an optimization technique performed on a small set of compiler-generated instructions, known as a peephole or window,[1] that involves replacing the instructions with a logically equivalent set that has better performance.

For example:

The term peephole optimization was introduced by William Marshall McKeeman in 1965.[2]

Replacements

Peephole optimization replacements include but are not limited to:[3]

Implementation

Modern compilers often implement peephole optimizations with a pattern matching algorithm.[4]

Examples

Replacing slow instructions with faster ones

The following Java bytecode:

aload 1aload 1mul

can be replaced with the following which executes faster:

aload 1dupmul

As for most peephole optimizations, this is based on the relative efficiency of different instructions. In this case, dup (which duplicates and pushes the top of the stack) is known/assumed to be more efficient than aload (which loads a local variable and pushes it onto the stack).

Removing redundant code

The following source code:

 a = b + c; d = a + e;

is straightforwardly compiled to:

MOV b, R0 ; Copy b to the registerADD c, R0 ; Add c to the register, the register is now b+cMOV R0, a ; Copy the register to aMOV a, R0 ; Copy a to the registerADD e, R0 ; Add e to the register, the register is now a+e [(b+c)+e]MOV R0, d ; Copy the register to d

but can be optimized to:

MOV b, R0 ; Copy b to the registerADD c, R0 ; Add c to the register, which is now b+c (a)MOV R0, a ; Copy the register to aADD e, R0 ; Add e to the register, which is now b+c+e [(a)+e]MOV R0, d ; Copy the register to d

Removing redundant stack instructions

If the compiler saves registers on the stack before calling a subroutine and restores them when returning, consecutive calls to subroutines may have redundant stack instructions.

Suppose the compiler generates the following Z80 instructions for each procedure call:

 PUSH AF PUSH BC PUSH DE PUSH HL CALL _ADDR POP HL POP DE POP BC POP AF

If there were two consecutive subroutine calls, they would look like this:

 PUSH AF PUSH BC PUSH DE PUSH HL CALL _ADDR1 POP HL POP DE POP BC POP AF PUSH AF PUSH BC PUSH DE PUSH HL CALL _ADDR2 POP HL POP DE POP BC POP AF

The sequence POP regs followed by PUSH for the same registers is generally redundant. In cases where it is redundant, a peephole optimization would remove these instructions. In the example, this would cause another redundant POP/PUSH pair to appear in the peephole, and these would be removed in turn. Assuming that subroutine _ADDR2 does not depend on previous register values, removing all of the redundant code in the example above would eventually leave the following code:

 PUSH AF PUSH BC PUSH DE PUSH HL CALL _ADDR1 CALL _ADDR2 POP HL POP DE POP BC POP AF

See also

References

  1. ^ Muchnick, Steven Stanley (1997-08-15). Advanced Compiler Design and Implementation. Academic Press / Morgan Kaufmann. ISBN 978-1-55860-320-2.
  2. ^ McKeeman, William Marshall (July 1965). "Peephole optimization". Communications of the ACM. 8 (7): 443–444. doi:10.1145/364995.365000. S2CID 9529633.
  3. ^ Fischer, Charles N.; Cytron, Ron K.; LeBlanc, Jr., Richard J. (2010). Crafting a Compiler (PDF). Addison-Wesley. ISBN 978-0-13-606705-4. Archived from the original (PDF) on 2018-07-03. Retrieved 2018-07-02.
  4. ^ Aho, Alfred Vaino; Lam, Monica Sin-Ling; Sethi, Ravi; Ullman, Jeffrey David (2007). "Chapter 8.9.2 Code Generation by Tiling an Input Tree". Compilers – Principles, Techniques, & Tools (PDF) (2 ed.). Pearson Education. p. 540. Archived (PDF) from the original on 2018-06-10. Retrieved 2018-07-02.

External links

The dictionary definition of peephole optimization at Wiktionary