stringtranslate.com

Испарение (осаждение)

Термическое испарение в лодочке с резистивным подогревом

Испарение — распространенный метод осаждения тонких пленок . Исходный материал испаряется в вакууме . Вакуум позволяет частицам пара перемещаться непосредственно к целевому объекту (подложке), где они конденсируются обратно в твердое состояние. Испарение используется в микрообработке и для изготовления крупномасштабных продуктов, таких как металлизированная пластиковая пленка.

История

Отложения в результате испарения впервые наблюдались в лампах накаливания в конце девятнадцатого века. Проблема потемнения лампочек была одним из главных препятствий на пути к созданию ламп с длительным сроком службы, и она тщательно изучалась Томасом Эдисоном и его компанией General Electric , а также многими другими, работавшими над собственными лампочками. Впервые это явление было адаптировано к процессу вакуумного осаждения Полем и Прингсхаймом в 1912 году. Однако оно не находило особого применения до 1930-х годов, когда люди начали экспериментировать со способами изготовления зеркал с алюминиевым покрытием для использования в телескопах . Алюминий был слишком реактивным, чтобы его можно было использовать в методах химического мокрого осаждения или гальваники . Джон Д. Стронг преуспел в изготовлении первых алюминиевых зеркал для телескопов в 1930-х годах с использованием осаждения из испарения. Поскольку при этом получается аморфное (стеклянное) покрытие, а не кристаллическое, с высокой однородностью и точным контролем толщины, с тех пор этот процесс стал распространенным процессом производства тонкопленочных оптических покрытий из различных материалов, как металлических, так и неметаллических ( диэлектрик) и был принят для многих других целей, таких как покрытие пластиковых игрушек и автомобильных деталей, производство полупроводников и микрочипов , а также майларовых пленок, которые используются в самых разных целях: от конденсаторов до терморегулирования космических кораблей . [1]

Физический принцип

Островки серебра толщиной в один атом, нанесенные на поверхность (111) палладия термическим испарением. Подложка, хотя и подверглась зеркальной полировке и вакуумному отжигу, выглядит как серия террас. Калибровка покрытия достигалась путем отслеживания времени, необходимого для формирования полного монослоя, с помощью туннельной микроскопии (СТМ) и появления состояний квантовой ямы , характерных для толщины пленки серебра, в фотоэмиссионной спектроскопии (ARPES). Размер изображения 250 на 250 нм. [2]

Испарение включает в себя два основных процесса: горячий источник испаряет материал и конденсирует его на более холодной подложке, температура которой ниже его температуры плавления. Это напоминает знакомый процесс, при котором жидкая вода появляется на крышке кипящей кастрюли. Однако газовая среда и источник тепла (см. ниже «Оборудование») различны. Жидкости , такие как вода, не могут существовать в вакууме, поскольку им требуется определенный уровень внешнего давления, чтобы удерживать атомы и молекулы вместе. В вакууме материалы сублимируются (испаряются), расширяются наружу и при контакте с поверхностью конденсируются обратно в твердое состояние ( осаждение ), даже не проходя через жидкое состояние. Таким образом, по сравнению с водой, этот процесс больше похож на образование инея на окне.

Испарение происходит в вакууме, т.е. пары, отличные от исходного материала, почти полностью удаляются до начала процесса. В высоком вакууме (с большой длиной свободного пробега ) испаренные частицы могут перемещаться непосредственно к мишени осаждения, не сталкиваясь с фоновым газом. (Напротив, в примере с кипящей кастрюлей водяной пар выталкивает воздух из кастрюли прежде, чем он достигнет крышки.) При типичном давлении 10 -4 Па средняя длина свободного пробега частицы размером 0,4 нм составляет 60 м. Горячие предметы в испарительной камере, такие как нагревательные нити, производят нежелательные пары, которые ограничивают качество вакуума.

Испаренные атомы, столкнувшиеся с инородными частицами, могут вступить с ними в реакцию; например, если алюминий осаждается в присутствии кислорода, образуется оксид алюминия. Они также уменьшают количество пара, попадающего на подложку, что затрудняет контроль толщины.

Испаренные материалы осаждаются неравномерно, если подложка имеет шероховатую поверхность (как это часто бывает в интегральных схемах). Поскольку испаряемый материал воздействует на подложку преимущественно с одного направления, выступающие элементы блокируют испаряемый материал в некоторых областях. Это явление называется «затенением» или «ступенчатым охватом».

Когда испарение проводится в плохом вакууме или при давлении, близком к атмосферному, полученное осаждение обычно бывает неоднородным и не представляет собой сплошную или гладкую пленку. Скорее, осаждение будет выглядеть нечетким.

Оборудование

Термический испаритель с молибденовой лодочкой, закрепленной между двумя массивными медными вводами, охлаждаемыми водой.

Любая система испарения включает в себя вакуумный насос . Он также включает в себя источник энергии, который испаряет наносимый материал. Существует множество различных источников энергии:

В некоторых системах подложка устанавливается на внеплоскостном планетарном механизме. Механизм вращает подложку одновременно вокруг двух осей, чтобы уменьшить затенение.

Оптимизация

Приложения

Испарительная машина, используемая для металлизации на технологическом предприятии LAAS в Тулузе, Франция.

Важным примером испарительного процесса является производство упаковочной пленки из алюминизированной ПЭТ- пленки в системе рулонного полотна . Часто слой алюминия в этом материале недостаточно толстый, чтобы быть полностью непрозрачным, поскольку более тонкий слой можно нанести дешевле, чем толстый. Основное назначение алюминия — изолировать изделие от внешней среды, создавая барьер для прохождения света , кислорода или водяного пара.

Испарение обычно используется в микротехнологиях для нанесения металлических пленок.

Сравнение с другими методами осаждения

Рекомендации

  1. ^ Основы технологии вакуумного нанесения покрытий. Д. М. Маттокс - Springer, 2004 г., стр. 37.
  2. ^ Тронтл, В. Микшич; Плетикосич, И.; Милун, М.; Перван, П.; Лазич, П.; Шокчевич, Д.; Брако, Р. (16 декабря 2005 г.). «Экспериментальное и ab initio исследование структурных и электронных свойств пленок Ag субнанометровой толщины на Pd (111)». Физический обзор B . 72 (23): 235418. doi :10.1103/PhysRevB.72.235418.
  3. ^ Кузьмичев, Анатолий; Цыбульский, Леонид (14 февраля 2011 г.). Грундас, Станислав (ред.). «Испарители с индукционным нагревом и их применение». ИнТех. дои : 10.5772/13934. ISBN 978-953-307-522-8. {{cite journal}}: Требуется цитировать журнал |journal=( помощь )

Внешние ссылки