stringtranslate.com

Нагрузка на кровать

Донные отложения в тальвеге ручья Кэмпбелл на Аляске .

Термин «донные наносы» или «донные наносы» описывает частицы в текущей жидкости (обычно воде), которые переносятся вдоль русла реки . Донные наносы являются дополнительными к взвешенным и промывным наносам .

Груз перемещается путем качения, скольжения и/или подпрыгивания (прыжков).

Как правило, донные отложения ниже по течению будут меньше и более округлыми, чем донные отложения выше по течению (процесс, известный как осветление ниже по течению). Это отчасти связано с истиранием и абразивным износом , которые возникают из-за столкновений камней друг с другом и с руслом реки, тем самым удаляя грубую текстуру ( округление ) и уменьшая размер частиц. Однако селективный перенос осадков также играет роль в отношении осветления ниже по течению: частицы меньше среднего размера легче захватываются , чем частицы больше среднего, поскольку напряжение сдвига, необходимое для захвата зерна, линейно пропорционально диаметру зерна. Однако степень селективности размера ограничивается эффектом сокрытия , описанным Паркером и Клингеманом (1982), [1] , при котором более крупные частицы выступают из ложа, тогда как мелкие частицы экранируются и скрываются более крупными частицами, в результате чего почти все размеры зерен захватываются при почти одинаковом напряжении сдвига. [2] [3]

Экспериментальные наблюдения показывают, что равномерный поток свободной поверхности над несвязным плоским дном не способен увлекать осадки ниже критического значения соотношения между мерами гидродинамических (дестабилизирующих) и гравитационных (стабилизирующих) сил, действующих на частицы осадка, так называемого напряжения Шилдса . Эта величина имеет вид:

,

где - скорость трения , s - относительная плотность частиц, d - эффективный диаметр частиц, увлекаемых потоком, а g - сила тяжести. Формула Мейера-Петера-Мюллера [4] для емкости слоя при равновесном и равномерном потоке гласит, что величина потока слоя придонной нагрузки для единичной ширины пропорциональна превышению напряжения сдвига по отношению к критическому . В частности, - монотонно возрастающая нелинейная функция превышения напряжения Шилдса , обычно выражаемая в виде степенного закона.

Ссылки

  1. ^ Паркер, Гэри; Клингеман, Питер К. (2010). «О том, почему гравийные русла ручьев вымощены». Water Resources Research . 18 (5): 1409–1423. doi :10.1029/WR018i005p01409.
  2. ^ Эшворт, Филип Дж.; Фергюсон, Роберт И. (1989). «Избирательный по размеру захват донных наносов в гравийных руслах». Water Resources Research . 25 (4): 627–634. Bibcode : 1989WRR....25..627A. doi : 10.1029/WR025i004p00627.
  3. ^ Паркер, Гэри; Торо-Эскобар, Карлос М. (2002). «Равная подвижность гравия в ручьях: остаток дня». Water Resources Research . 38 (11): 1264. Bibcode : 2002WRR....38.1264P. doi : 10.1029/2001WR000669 .
  4. ^ Мейер-Петер, Э.; Мюллер, Р. (1948). Формулы для транспорта донного груза . Труды 2-го заседания Международной ассоциации по исследованию гидротехнических сооружений. С. 39–64.