Тест Белла , также известный как тест на неравенство Белла или эксперимент Белла , — это физический эксперимент в реальном мире , разработанный для проверки теории квантовой механики в связи с концепцией локального реализма Альберта Эйнштейна . Названный в честь Джона Стюарта Белла , эксперименты проверяют, удовлетворяет ли реальный мир локальному реализму, который требует наличия некоторых дополнительных локальных переменных (называемых «скрытыми», потому что они не являются особенностью квантовой теории) для объяснения поведения частиц, таких как фотоны и электроны . Тест эмпирически оценивает последствия теоремы Белла . По состоянию на 2015 год все тесты Белла обнаружили, что гипотеза о локальных скрытых переменных несовместима с тем, как ведут себя физические системы. [1][update]
В физических лабораториях проводились многие типы тестов Белла, часто с целью устранения проблем экспериментального проектирования или настройки, которые в принципе могли повлиять на достоверность результатов более ранних тестов Белла . Это известно как «закрытие лазеек в тестах Белла ». [1]
Нарушения неравенства Белла также используются в некоторых протоколах квантовой криптографии , где присутствие шпиона обнаруживается, когда неравенства Белла перестают нарушаться.
Тест Белла берет свое начало в дебатах между Эйнштейном и другими пионерами квантовой физики, в первую очередь Нильсом Бором . Одной из обсуждаемых особенностей теории квантовой механики было значение принципа неопределенности Гейзенберга . Этот принцип гласит, что если известна некоторая информация о данной частице, то существует некоторая другая информация о ней, которую узнать невозможно. Примером этого являются наблюдения за положением и импульсом данной частицы. Согласно принципу неопределенности, импульс частицы и ее положение не могут быть одновременно определены с произвольно высокой точностью. [2]
В 1935 году Эйнштейн, Борис Подольский и Натан Розен опубликовали заявление о том, что квантовая механика предсказывает, что можно наблюдать больше информации о паре запутанных частиц , чем допускал принцип Гейзенберга, что было бы возможно только в том случае, если бы информация мгновенно передавалась между двумя частицами. Это создает парадокс , который стал известен как « парадокс ЭПР » по имени трех авторов. Он возникает, если любой эффект, ощущаемый в одном месте, не является результатом причины, которая произошла в его прошлом световом конусе относительно его местоположения. Это действие на расстоянии, по-видимому, нарушает причинность , позволяя информации между двумя местами перемещаться быстрее скорости света. [ необходима ссылка ] Однако распространено заблуждение думать, что любая информация может быть передана между двумя наблюдателями быстрее скорости света с помощью запутанных частиц; гипотетическая передача информации здесь происходит между частицами. См. теорему об отсутствии связи для дальнейшего объяснения.
На основании этого авторы пришли к выводу, что квантовая волновая функция не дает полного описания реальности. Они предположили, что должны быть некоторые локальные скрытые переменные, которые работают для того, чтобы объяснить поведение запутанных частиц. В теории скрытых переменных, как ее представлял себе Эйнштейн, случайность и неопределенность, наблюдаемые в поведении квантовых частиц, были бы только кажущимися. Например, если бы кто-то знал детали всех скрытых переменных, связанных с частицей, то он мог бы предсказать как ее положение, так и импульс. Неопределенность, которая была количественно определена принципом Гейзенберга, была бы просто артефактом отсутствия полной информации о скрытых переменных. Кроме того, Эйнштейн утверждал, что скрытые переменные должны подчиняться условию локальности: какими бы ни были скрытые переменные на самом деле, поведение скрытых переменных для одной частицы не должно мгновенно влиять на поведение скрытых переменных для другой частицы, находящейся далеко. Эта идея, называемая принципом локальности , коренится в интуиции классической физики о том, что физические взаимодействия не распространяются мгновенно в пространстве. Эти идеи были предметом постоянных дебатов между их сторонниками. В частности, сам Эйнштейн не одобрял способ, которым Подольский сформулировал проблему в своей знаменитой работе ЭПР. [3] [4]
В 1964 году Джон Стюарт Белл предложил свою знаменитую теорему, которая гласит, что никакая физическая теория скрытых локальных переменных не может воспроизвести все предсказания квантовой механики. В теореме подразумевается предположение, что детерминизм классической физики принципиально неспособен описывать квантовую механику. Белл расширил теорему, чтобы предоставить то, что станет концептуальной основой экспериментов Белла. [ необходима цитата ]
Типичный эксперимент включает наблюдение за частицами, часто фотонами, в аппарате, разработанном для создания запутанных пар и позволяющем измерять некоторые характеристики каждой из них, такие как их спин . Результаты эксперимента затем можно было бы сравнить с тем, что было предсказано локальным реализмом, и тем, что было предсказано квантовой механикой. [ необходима цитата ]
Теоретически результаты могли бы «случайно» соответствовать обоим. Чтобы решить эту проблему, Белл предложил математическое описание локального реализма, которое наложило статистический предел на вероятность этой возможности. Если результаты эксперимента нарушают неравенство Белла, локальные скрытые переменные могут быть исключены как их причина. Более поздние исследователи основывались на работе Белла, предлагая новые неравенства, которые служат той же цели и уточняют основную идею тем или иным образом. [5] [6] Следовательно, термин «неравенство Белла» может означать любое из ряда неравенств, удовлетворяемых теориями локальных скрытых переменных; на практике многие современные эксперименты используют неравенство CHSH . Все эти неравенства, как и оригинальное, разработанное Беллом, выражают идею о том, что предположение локального реализма накладывает ограничения на статистические результаты экспериментов на наборах частиц, которые приняли участие во взаимодействии, а затем разделились. [ необходима цитата ]
На сегодняшний день все тесты Белла подтвердили теорию квантовой физики, а не гипотезу локальных скрытых переменных. Эти усилия по экспериментальному подтверждению нарушений неравенств Белла привели к тому, что Джон Клаузер , Ален Аспект и Антон Цайлингер были удостоены Нобелевской премии по физике 2022 года . [7]
На практике большинство реальных экспериментов использовали свет, который, как предполагалось, испускался в форме фотонов, подобных частицам (образующихся в результате атомного каскада или спонтанного параметрического преобразования вниз ), а не атомов, которые изначально имел в виду Белл. В наиболее известных экспериментах интересующим свойством является направление поляризации , хотя могут использоваться и другие свойства. Такие эксперименты делятся на два класса в зависимости от того, имеют ли используемые анализаторы один или два выходных канала.
На схеме показан типичный оптический эксперимент двухканального типа , прецедент которого создал Ален Аспект в 1982 году. [8] Совпадения (одновременные обнаружения) регистрируются, результаты классифицируются как «++», «+−», «−+» или «−−», и соответствующие подсчеты накапливаются.
Проводятся четыре отдельных подэксперимента, соответствующих четырем термам E ( a , b ) в тестовой статистике S (уравнение (2), показанное ниже). Настройки a , a ′, b и b ′ на практике обычно выбираются равными 0, 45°, 22,5° и 67,5° соответственно — «углы теста Белла» — именно для них квантово-механическая формула дает наибольшее нарушение неравенства.
Для каждого выбранного значения a и b регистрируются числа совпадений в каждой категории ( N ++ , N −− , N +− и N −+ ). Экспериментальная оценка для E ( a , b ) затем рассчитывается как:
После того, как все четыре E были оценены, экспериментальная оценка тестовой статистики
может быть найдено. Если S численно больше 2, то это нарушило неравенство CHSH. Эксперимент, как утверждается, подтвердил предсказание КМ и исключил все локальные теории скрытых переменных.
Однако для оправдания использования выражения (2) пришлось сделать сильное предположение, а именно, что выборка обнаруженных пар является репрезентативной для пар, испускаемых источником. Отрицание этого предположения называется лазейкой справедливой выборки .
До 1982 года все реальные тесты Белла использовали «одноканальные» поляризаторы и вариации неравенства, разработанные для этой установки. Последнее описано в часто цитируемой статье 1969 года Клаузера, Хорна, Шимони и Холта как подходящее для практического использования. [5] Как и в тесте CHSH, есть четыре подэксперимента, в которых каждый поляризатор принимает одну из двух возможных настроек, но, кроме того, есть другие подэксперименты, в которых один или другой поляризатор или оба отсутствуют. Подсчеты производятся, как и прежде, и используются для оценки статистики теста.
где символ ∞ указывает на отсутствие поляризатора.
Если S превышает 0, то эксперимент объявляется нарушившим неравенство CH и, следовательно, опровергающим локальные скрытые переменные. Это неравенство известно как неравенство CH, а не CHSH, поскольку оно было также выведено в статье 1974 года Клаузером и Хорном более строго и при более слабых предположениях. [9]
Помимо теоретических предположений, существуют и практические. Например, может быть ряд «случайных совпадений» в дополнение к тем, которые представляют интерес. Предполагается, что не вносится никакого смещения путем вычитания их предполагаемого числа перед вычислением S , но то, что это правда, некоторые не считают очевидным. Могут быть проблемы синхронизации — неоднозначность в распознавании пар, поскольку на практике они не будут обнаружены в одно и то же время.
Тем не менее, несмотря на все недостатки реальных экспериментов, возникает один поразительный факт: результаты, в очень хорошем приближении, соответствуют тому, что предсказывает квантовая механика. Если несовершенные эксперименты дают нам такое превосходное совпадение с квантовыми предсказаниями, большинство работающих квантовых физиков согласятся с Джоном Беллом , ожидая, что при проведении идеального теста Белла неравенства Белла все равно будут нарушены. Такое отношение привело к появлению нового подраздела физики, известного как квантовая теория информации . Одним из главных достижений этой новой ветви физики является демонстрация того, что нарушение неравенств Белла приводит к возможности безопасной передачи информации, которая использует так называемую квантовую криптографию (включающую запутанные состояния пар частиц).
За последние полвека было проведено большое количество экспериментов с тестами Белла. Эксперименты обычно интерпретируются для исключения локальных теорий скрытых переменных, и в 2015 году был проведен эксперимент, который не подвержен ни лазейке локальности, ни лазейке обнаружения (Хенсен и др. [10] ). Эксперимент, свободный от лазейки локальности, — это тот, в котором для каждого отдельного измерения и в каждом крыле эксперимента выбирается новая настройка, а измерение завершается до того, как сигналы смогут передать настройки из одного крыла эксперимента в другое. Эксперимент, свободный от лазейки обнаружения, — это тот, в котором близкие к 100% успешных результатов измерения в одном крыле эксперимента сочетаются с успешным измерением в другом крыле. Этот процент называется эффективностью эксперимента. Достижения в области технологий привели к появлению большого разнообразия методов проверки неравенств типа Белла.
Некоторые из наиболее известных и недавних экспериментов включают в себя:
Леонард Ральф Касдей, Джек Р. Ульман и Цзянь-Шюн Ву провели первый экспериментальный тест Белла, используя пары фотонов, полученные в результате распада позитрония и проанализированные с помощью комптоновского рассеяния . Эксперимент обнаружил корреляции поляризации фотонов, согласующиеся с квантовыми предсказаниями и несогласующиеся с локальными реалистичными моделями, которые подчиняются известной поляризационной зависимости комптоновского рассеяния. Из-за низкой поляризационной селективности комптоновского рассеяния результаты не нарушали неравенство Белла. [11] [12]
Стюарт Дж. Фридман и Джон Клаузер провели первый тест Белла, который обнаружил нарушение неравенства Белла, используя неравенство Фридмана, вариант неравенства CH74 . [13]
Ален Аспект и его команда в Орсе, Париж, провели три теста Белла с использованием каскадных источников кальция. Первый и последний использовали неравенство CH74 . Второй был первым применением неравенства CHSH . Третий (и самый известный) был организован таким образом, что выбор между двумя настройками на каждой стороне производился во время полета фотонов (как первоначально предполагал Джон Белл ). [14] [15]
Эксперименты по тесту Bell в Женеве 1998 года показали, что расстояние не разрушает «запутанность». Свет посылался по оптоволоконным кабелям на расстояние в несколько километров, прежде чем его анализировали. Как и почти во всех тестах Bell с 1985 года, использовался источник «параметрического преобразования с понижением частоты» (PDC). [16] [17]
В 1998 году Грегор Вейхс и группа в Инсбруке под руководством Антона Цайлингера провели эксперимент, который закрыл лазейку «локальности», улучшив результаты Аспекта 1982 года. Выбор детектора был сделан с использованием квантового процесса, чтобы гарантировать его случайность. Этот тест нарушил неравенство CHSH более чем на 30 стандартных отклонений, кривые совпадений согласовались с предсказанными квантовой теорией. [18]
Это первый из новых экспериментов типа Белла с более чем двумя частицами; в нем используется так называемое состояние GHZ трех частиц. [19]
Впервые лазейка обнаружения была закрыта в эксперименте с двумя запутанными захваченными ионами, проведенном в группе по хранению ионов Дэвида Уайнленда в Национальном институте стандартов и технологий в Боулдере. Эксперимент имел эффективность обнаружения, значительно превышающую 90%. [20]
Используя полулептонные распады B0 Υ(4S) в эксперименте Белля, было обнаружено явное нарушение неравенства Белла в корреляции частица-античастица. [21]
Исключается определенный класс нелокальных теорий, предложенных Энтони Леггеттом . На основании этого авторы делают вывод, что любая возможная нелокальная теория скрытых переменных, согласующаяся с квантовой механикой, должна быть крайне контринтуитивной. [22] [23]
Этот эксперимент заполнил лазейку, обеспечив расстояние в 18 км между детекторами, что достаточно для завершения измерений квантового состояния до того, как какая-либо информация могла бы быть передана между двумя детекторами. [24] [25]
Это был первый эксперимент, проверяющий неравенства Белла с твердотельными кубитами (использовались сверхпроводящие фазовые кубиты Джозефсона ). Этот эксперимент преодолел лазейку обнаружения с помощью пары сверхпроводящих кубитов в запутанном состоянии. Однако эксперимент все еще страдал от лазейки локальности, поскольку кубиты были разделены всего несколькими миллиметрами. [26]
Впервые лазейка для обнаружения фотонов была закрыта Мариссой Джустиной , с использованием высокоэффективных детекторов . Это делает фотоны первой системой, для которой все основные лазейки были закрыты, хотя и в разных экспериментах. [27] [28]
Эксперимент Кристенсена и др. (2013) [29] похож на эксперимент Джустины и др. [27]. Джустина и др. провели всего четыре длительных прогона с постоянными настройками измерения (по одному для каждой из четырех пар настроек). Эксперимент не был импульсным, поэтому формирование «пар» из двух записей результатов измерений (Элис и Боб) должно было быть выполнено после эксперимента, что фактически подвергает эксперимент лазейке совпадений. Это привело к повторному анализу экспериментальных данных таким образом, что лазейка совпадений была устранена, и, к счастью, новый анализ все еще показал нарушение соответствующего неравенства CHSH или CH. [28] С другой стороны, эксперимент Кристенсена и др. был импульсным, и настройки измерения часто сбрасывались случайным образом, хотя только один раз на каждые 1000 пар частиц, а не каждый раз. [29]
В 2015 году первые три теста Bell без существенных лазеек были опубликованы в течение трех месяцев независимыми группами в Делфте, Вене и Боулдере. Все три теста одновременно рассматривали лазейку обнаружения, лазейку локальности и лазейку памяти. Это делает их «без лазеек» в том смысле, что все оставшиеся мыслимые лазейки, такие как супердетерминизм, требуют действительно экзотических гипотез, которые могут никогда не быть закрыты экспериментально.
Первый опубликованный эксперимент Хенсена и др. [10] использовал фотонную связь для запутывания электронных спинов двух дефектных центров азотных вакансий в алмазах на расстоянии 1,3 км друг от друга и измерил нарушение неравенства CHSH ( S = 2,42 ± 0,20). Таким образом, гипотеза локального реализма могла быть отвергнута с p -значением 0,039.
Оба одновременно опубликованных эксперимента Джустины и др. [30] и Шалма и др. [31] использовали запутанные фотоны для получения нарушения неравенства Белла с высокой статистической значимостью (p-value ≪10 −6 ). Примечательно, что эксперимент Шалма и др. также объединил три типа генераторов (квази-)случайных чисел для определения выбора базиса измерения. Одним из этих методов, подробно описанных во вспомогательном файле, является «'Культурный' псевдослучайный источник», который включал использование битовых строк из популярных медиа, таких как фильмы Назад в будущее , Звездный путь: За последним рубежом , Монти Пайтон и Священный Грааль и телевизионные шоу Спасенные звонком и Доктор Кто . [32]
Используя свидетельство корреляций Белла, полученное из многочастичного неравенства Белла, физики Базельского университета смогли впервые заключить корреляцию Белла в системе многих тел, состоящей примерно из 480 атомов в конденсате Бозе-Эйнштейна. Несмотря на то, что лазейки не были закрыты, этот эксперимент показывает возможность наблюдения корреляций Белла в макроскопическом режиме. [33]
Физики под руководством Дэвида Кайзера из Массачусетского технологического института и Антона Цайлингера из Института квантовой оптики и квантовой информации и Венского университета провели эксперимент, который «дал результаты, согласующиеся с нелокальностью», измерив звездный свет, которому потребовалось 600 лет, чтобы добраться до Земли. [34] Эксперимент «представляет собой первый эксперимент, радикально ограничивающий область пространства-времени, в которой скрытые переменные могли бы иметь значение». [35] [36] [37]
Физики из Мюнхенского университета Людвига-Максимилиана и Института квантовой оптики Макса Планка опубликовали результаты эксперимента, в котором они наблюдали нарушение неравенства Белла с использованием запутанных спиновых состояний двух атомов с разделяющим расстоянием 398 метров, в котором лазейка обнаружения, лазейка локальности и лазейка памяти были закрыты. Нарушение S = 2,221 ± 0,033 отвергло локальный реализм со значением значимости P = 1,02×10−16 при учете 7 месяцев данных и 55000 событий или верхней границы P = 2,57×10−9 из одного запуска с 10000 событий. [38]
В международном совместном научном усилии для определения параметров измерения использовался произвольный человеческий выбор вместо использования генераторов случайных чисел. Если предположить, что свободная воля человека существует, это закрыло бы «лазейку свободы выбора». Было набрано около 100 000 участников, чтобы обеспечить достаточный ввод для того, чтобы эксперимент был статистически значимым. [39]
В 2018 году международная группа использовала свет от двух квазаров (один из которых был сгенерирован примерно восемь миллиардов лет назад, а другой — примерно двенадцать миллиардов лет назад) в качестве основы для своих настроек измерений. [40] Этот эксперимент отодвинул временные рамки того, когда настройки могли быть взаимно определены, по крайней мере на 7,8 миллиарда лет назад, что составляет существенную часть сверхдетерминированного предела (создания Вселенной 13,8 миллиарда лет назад). [41]
В выпуске PBS Nova 2019 года « Квантовая загадка Эйнштейна » документируется это измерение «космического теста Белла» с кадрами научной группы, находящейся на месте, в высокогорной обсерватории Тейде, расположенной на Канарских островах . [42]
В 2023 году международная группа под руководством Андреаса Вальраффа из Швейцарской высшей технической школы Цюриха продемонстрировала нарушение неравенства CHSH без лазеек с помощью сверхпроводящих цепей, детерминированно запутанных посредством криогенной связи, охватывающей расстояние в 30 метров. [43]
Хотя серия все более сложных экспериментов Белла убедила физическое сообщество в том, что локальные теории скрытых переменных несостоятельны, их никогда нельзя исключить полностью. [44] Например, гипотеза супердетерминизма , в которой все эксперименты и результаты (и все остальное) предопределены, никогда не может быть исключена (потому что она нефальсифицируема ). [45]
До 2015 года результаты всех экспериментов, нарушающих неравенство Белла, теоретически могли быть объяснены с помощью лазейки обнаружения и/или лазейки локальности. Лазейка локальности (или связи) означает, что поскольку на практике два обнаружения разделены интервалом , подобным времени , первое обнаружение может повлиять на второе каким-то сигналом. Чтобы избежать этой лазейки, экспериментатор должен гарантировать, что частицы перемещаются далеко друг от друга до измерения, и что процесс измерения является быстрым. Более серьезной является лазейка обнаружения (или несправедливой выборки), поскольку частицы не всегда обнаруживаются в обоих крыльях эксперимента. Можно представить, что полный набор частиц будет вести себя случайным образом, но приборы обнаруживают только подвыборку, показывающую квантовые корреляции , позволяя обнаружению зависеть от комбинации локальных скрытых переменных и настройки детектора. [ необходима цитата ]
Экспериментаторы неоднократно заявляли, что в ближайшем будущем можно ожидать испытаний без лазеек. [46] [47] В 2015 году было сообщено о нарушении Белла без лазеек с использованием запутанных алмазных спинов на расстоянии 1,3 километра (1300 м) [10] и подтверждено двумя экспериментами с использованием запутанных пар фотонов. [30] [31]
Оставшиеся возможные теории, которые подчиняются локальному реализму, могут быть дополнительно ограничены путем тестирования различных пространственных конфигураций, методов определения настроек измерения и записывающих устройств. Было высказано предположение, что использование людей для создания настроек измерения и наблюдения за результатами обеспечивает дальнейшую проверку. [48] Дэвид Кайзер из Массачусетского технологического института сказал New York Times в 2015 году, что потенциальная слабость экспериментов «без лазеек» заключается в том, что системы, используемые для добавления случайности к измерению, могут быть предопределены в методе, который не был обнаружен в экспериментах. [49]
Распространенной проблемой в оптических тестах Белла является то, что обнаруживается только малая часть испускаемых фотонов. Тогда возможно, что корреляции обнаруженных фотонов нерепрезентативны: хотя они показывают нарушение неравенства Белла, если бы были обнаружены все фотоны, неравенство Белла фактически соблюдалось бы. Это было впервые отмечено Филиппом М. Пирлом в 1970 году [50] , который разработал локальную модель скрытых переменных, которая имитировала нарушение неравенства Белла, позволяя обнаруживать фотон только в том случае, если настройка измерения была благоприятной. Предположение о том, что этого не происходит, т. е. что малая выборка на самом деле репрезентативна для целого, называется предположением о честной выборке .
Чтобы избавиться от этого предположения, необходимо обнаружить достаточно большую часть фотонов. Обычно это характеризуется в терминах эффективности обнаружения , определяемой как вероятность того, что фотодетектор обнаружит фотон, который к нему придет. Анупам Гарг и Н. Дэвид Мермин показали, что при использовании максимально запутанного состояния и неравенства CHSH для нарушения без лазеек требуется эффективность . [51] Позднее Филипп Х. Эберхард показал, что при использовании частично запутанного состояния нарушение без лазеек возможно для , [52] что является оптимальной границей для неравенства CHSH. [53] Другие неравенства Белла допускают даже более низкие границы. Например, существует неравенство с четырьмя установками, которое нарушается для . [54]
Исторически только эксперименты с неоптическими системами смогли достичь достаточно высокой эффективности, чтобы закрыть эту лазейку, например, захваченные ионы, [55] сверхпроводящие кубиты, [56] и азотно-вакансионные центры . [57] Эти эксперименты не смогли закрыть лазейку локальности, что легко сделать с фотонами. Однако совсем недавно оптические установки смогли достичь достаточно высокой эффективности обнаружения, используя сверхпроводящие фотодетекторы, [30] [31] а гибридные установки смогли объединить высокую эффективность обнаружения, типичную для материальных систем, с простотой распределения запутанности на расстоянии, типичной для фотонных систем. [10]
Одно из предположений теоремы Белла — это предположение локальности, а именно, что выбор настройки в месте измерения не влияет на результат другого. Мотивацией этого предположения является теория относительности , которая запрещает коммуникацию быстрее света. Чтобы эта мотивация была применима к эксперименту, он должен иметь пространственное разделение между событиями измерений. То есть время, которое проходит между выбором настройки измерения и получением результата, должно быть короче времени, которое требуется световому сигналу для прохождения между местами измерения. [58]
Первым экспериментом, который стремился соблюдать это условие, был эксперимент Аспекта 1982 года. [15] В нем настройки менялись достаточно быстро, но детерминированно. Первым экспериментом, в котором настройки менялись случайным образом, с выбором, сделанным квантовым генератором случайных чисел , был эксперимент Вейхса и др. 1998 года. [18] Шейдл и др. усовершенствовали его в 2010 году, проведя эксперимент между точками, разделенными расстоянием 144 км (89 миль). [59]
Во многих экспериментах, особенно основанных на поляризации фотонов, пары событий в двух крыльях эксперимента идентифицируются как принадлежащие к одной паре только после проведения эксперимента, путем оценки того, достаточно ли близки друг к другу их времена обнаружения. Это создает новую возможность для локальной теории скрытых переменных «подделывать» квантовые корреляции: задерживать время обнаружения каждой из двух частиц на большую или меньшую величину в зависимости от некоторой связи между скрытыми переменными, переносимыми частицами, и настройками детектора, обнаруженными на измерительной станции. [60]
Лазейку совпадений можно полностью исключить, просто работая с заранее фиксированной решеткой окон обнаружения, которые достаточно коротки, чтобы большинство пар событий, происходящих в одном и том же окне, действительно возникали с одним и тем же излучением, и достаточно длинны, чтобы истинная пара не была разделена границей окна. [60]
В большинстве экспериментов измерения многократно производятся в одних и тех же двух местах. Локальная теория скрытых переменных могла бы использовать память о прошлых настройках и результатах измерений, чтобы увеличить нарушение неравенства Белла. Более того, физические параметры могут меняться во времени. Было показано, что при условии, что каждая новая пара измерений выполняется с новой случайной парой настроек измерений, ни память, ни неоднородность времени не оказывают серьезного влияния на эксперимент. [61] [62] [63]
Необходимое предположение для вывода теоремы Белла заключается в том, что скрытые переменные не коррелируют с настройками измерения. Это предположение было оправдано на том основании, что экспериментатор имеет « свободную волю » для выбора настроек, и что это необходимо для того, чтобы заниматься наукой в первую очередь. (Гипотетическая) теория, в которой выбор измерения определяется измеряемой системой, известна как супердетерминированная . [45]
Многомировая интерпретация , также известная как интерпретация Хью Эверетта , является детерминированной и имеет локальную динамику, состоящую из унитарной части квантовой механики без коллапса. Теорема Белла неприменима из-за неявного предположения, что измерения имеют единственный результат. [64]