stringtranslate.com

Пренекс нормальная форма

Формула исчисления предикатов находится в нормальной форме пренекса [1] ( PNF ), если она записана как строка кванторов и связанных переменных , называемая префиксом , за которой следует часть без кванторов, называемая матрицей . [2] Вместе с нормальными формами в логике высказываний (например, дизъюнктивной нормальной формой или конъюнктивной нормальной формой ) она обеспечивает каноническую нормальную форму , полезную при автоматизированном доказательстве теорем .

Каждая формула классической логики логически эквивалентна формуле в пренексной нормальной форме. Например, если , и являются формулами без кванторов с показанными свободными переменными, то

находится в пренексной нормальной форме с матрицей , а

логически эквивалентен, но не в пренексной нормальной форме.

Преобразование в предварительную форму

Любая формула первого порядка логически эквивалентна (в классической логике) некоторой формуле в пренексной нормальной форме. [3] Существует несколько правил преобразования, которые можно рекурсивно применять для преобразования формулы в предварительную нормальную форму. Правила зависят от того, какие логические связки встречаются в формуле.

Соединение и дизъюнкция

Правила конъюнкции и дизъюнкции гласят, что

эквивалентно (мягкому) дополнительному состоянию или, что то же самое, (это означает, что существует хотя бы один человек),
эквивалентно ;

и

эквивалентно ,
эквивалентно при дополнительном условии .

Эквиваленты действительны, когда не появляется как свободная переменная ; если действительно появляется свободным в , можно переименовать связанный в и получить эквивалент .

Например, на языке колец ,

эквивалентно ,

но

не эквивалентно

потому что формула слева истинна в любом кольце, когда свободная переменная x равна 0, а формула справа не имеет свободных переменных и ложна в любом нетривиальном кольце. Поэтому сначала будет переписано как , а затем приведено в пренексную нормальную форму .

Отрицание

Правила отрицания гласят, что

эквивалентно

и

эквивалентно .

Импликация

Существует четыре правила импликации : два, которые удаляют кванторы из антецедента, и два, которые удаляют кванторы из консеквента. Эти правила можно получить, переписав импликацию как и применив вышеизложенные правила дизъюнкции и отрицания. Как и в случае с правилами дизъюнкции, эти правила требуют, чтобы переменная, выраженная количественно в одной подформуле, не появлялась свободной в другой подформуле.

Правила удаления кванторов из антецедента таковы (обратите внимание на изменение кванторов):

эквивалентно (в предположении, что ),
эквивалентно .

Правила удаления кванторов из консеквента таковы:

эквивалентно (в предположении, что ),
эквивалентно .

Например, когда диапазон количественной оценки представляет собой неотрицательное натуральное число (а именно ), утверждение

логически эквивалентно утверждению

Первое утверждение гласит, что если x меньше любого натурального числа, то x меньше нуля. Последнее утверждение гласит, что существует некоторое натуральное число n такое, что если x меньше n , то x меньше нуля. Оба утверждения верны. Первое утверждение верно, потому что, если x меньше любого натурального числа, оно должно быть меньше наименьшего натурального числа (ноля). Последнее утверждение верно, поскольку n=0 делает импликацию тавтологией .

Обратите внимание, что расстановка скобок подразумевает объем количественной оценки , что очень важно для смысла формулы. Рассмотрим следующие два утверждения:

и его логически эквивалентное утверждение

Первое утверждение гласит, что для любого натурального числа n , если x меньше n , то x меньше нуля. Последнее утверждение гласит, что если существует некоторое натуральное число n такое, что x меньше n , то x меньше нуля. Оба утверждения ложны. Первое утверждение не справедливо для n=2 , поскольку x=1 меньше n , но не меньше нуля. Последнее утверждение не выполняется для x=1 , поскольку натуральное число n=2 удовлетворяет условию x<n , но x=1 не меньше нуля.

Пример

Предположим , что , и являются формулами без кванторов и никакие две из этих формул не имеют общих свободных переменных. Рассмотрим формулу

.

Рекурсивно применяя правила, начиная с самых внутренних подформул, можно получить следующую последовательность логически эквивалентных формул:

.
,
,
,
,
,
,
.

Это не единственная форма пренекса, эквивалентная исходной формуле. Например, если в приведенном выше примере иметь дело с консеквентом перед антецедентом, пренексная форма

может быть получен:

,
,
.

Расположение двух кванторов универсальности с одинаковой областью действия не меняет значения/истинного значения утверждения.

Интуиционистская логика

В правилах преобразования формулы в пренексную форму широко используется классическая логика. В интуиционистской логике неверно, что каждая формула логически эквивалентна предшествующей формуле. Связка отрицания — одно из препятствий, но не единственное. Оператор импликации также трактуется в интуиционистской логике иначе, чем в классической логике; в интуиционистской логике его невозможно определить с помощью дизъюнкции и отрицания.

Интерпретация BHK иллюстрирует, почему некоторые формулы не имеют интуиционистски эквивалентной пренексной формы. В этой интерпретации доказательство

— это функция, которая при наличии конкретного x и доказательства даёт конкретный y и доказательство . В этом случае допускается вычисление значения y на основе заданного значения x . Доказательство

с другой стороны, выдает одно конкретное значение y и функцию, которая преобразует любое доказательство в доказательство . Если каждый удовлетворяющий x может быть использован для построения удовлетворяющего y , но ни один такой y не может быть построен без знания такого x , то формула (1) не будет эквивалентна формуле (2).

Правила преобразования формулы в предварительную форму, которые не работают в интуиционистской логике:

(1) подразумевает ,
(2) подразумевает ,
(3) подразумевает ,
(4) подразумевает ,
(5) подразумевает ,

( x не фигурирует как свободная переменная в (1) и (3); x не фигурирует как свободная переменная в (2) и (4)).

Использование предварительной формы

Некоторые исчисления доказательств будут иметь дело только с теорией, формулы которой записаны в пренексной нормальной форме. Эта концепция важна для разработки арифметической и аналитической иерархии .

Доказательство Гёделя его теоремы о полноте для логики первого порядка предполагает, что все формулы были преобразованы в предварительную нормальную форму.

Аксиомы Тарского для геометрии — это логическая система, все предложения которой могут быть записаны в универсально-экзистенциальной форме , особый случай пренексной нормальной формы, в которой каждый квантор универсальности предшествует любому квантору существования , так что все предложения могут быть переписаны в форме , где это предложение, не содержащее квантора. Этот факт позволил Тарскому доказать разрешимость евклидовой геометрии .     

Смотрите также

Примечания

  1. ^ Термин «prenex» происходит от латинского praenexus «связанный или связанный спереди», причастия прошедшего времени от praenectere [1] (архивировано по состоянию на 27 мая 2011 г. в [2]).
  2. ^ Хинман, П. (2005), с. 110
  3. ^ Хинман, П. (2005), с. 111

Рекомендации