В математике синглтон (также известный как единичный набор [1] или одноточечный набор ) — это набор , содержащий ровно один элемент . Например, набор — это синглтон, единственным элементом которого является .
В рамках теории множеств Цермело–Френкеля аксиома регулярности гарантирует, что ни одно множество не является элементом самого себя. Это подразумевает, что синглтон обязательно отличен от содержащегося в нем элемента, [1] таким образом, 1 и не являются одним и тем же, а пустое множество отличается от множества, содержащего только пустое множество. Такое множество является синглтоном, поскольку содержит единственный элемент (который сам по себе является множеством, но не синглтоном).
Множество является синглетоном тогда и только тогда, когда его мощность равна 1. В теоретико-множественной конструкции фон Неймана натуральных чисел число 1 определяется как синглетон
В аксиоматической теории множеств существование синглетонов является следствием аксиомы спаривания : для любого множества A аксиома, примененная к A и A, утверждает существование которого совпадает с существованием синглета (поскольку он содержит A и никакой другой набор в качестве элемента).
Если A — это любое множество, а S — это любой синглтон, то существует ровно одна функция из A в S , функция, отправляющая каждый элемент A в единственный элемент S. Таким образом, каждый синглтон является конечным объектом в категории множеств .
Синглтон обладает свойством, что каждая функция из него в любое произвольное множество является инъективной. Единственное множество, не являющееся синглтоном, с этим свойством — это пустое множество .
Каждое одноэлементное множество является ультрафильтром . Если является множеством и тогда восходящее к , в котором находится множество, является главным ультрафильтром на . Более того, каждый главный ультрафильтр на обязательно имеет эту форму. [2] Лемма об ультрафильтрах подразумевает, что неглавные ультрафильтры существуют на каждом бесконечном множестве (они называются свободными ультрафильтрами ). Каждая сеть, оцененная в одноэлементном подмножестве , является ультрасетью на
Последовательность целых чисел Белла подсчитывает количество разделов набора ( OEIS : A000110 ), если исключить одиночные элементы, то числа будут меньше ( OEIS : A000296 ).
Структуры, построенные на синглтонах, часто служат конечными объектами или нулевыми объектами различных категорий :
Пусть S — класс , определяемый индикаторной функцией. Тогда S называется синглтоном тогда и только тогда, когда существует такой класс , что для всех
Следующее определение было введено Уайтхедом и Расселом [3]
Символ ' обозначает синглтон и обозначает класс объектов, идентичных aka . Это встречается как определение во введении, которое местами упрощает аргумент в основном тексте, где оно встречается как предложение 51.01 (стр. 357 там же). Предложение впоследствии используется для определения кардинального числа 1 как
То есть, 1 — это класс синглтонов. Это определение 52.01 (стр. 363 там же).