stringtranslate.com

Fuel fraction

With a fuel fraction of nearly 85%, the GlobalFlyer could carry 5 times its weight in fuel.

In aerospace engineering, an aircraft's fuel fraction, fuel weight fraction,[1] or a spacecraft's propellant fraction, is the weight of the fuel or propellant divided by the gross take-off weight of the craft (including propellant):[2]

The fractional result of this mathematical division is often expressed as a percent. For aircraft with external drop tanks, the term internal fuel fraction is used to exclude the weight of external tanks and fuel.

Fuel fraction is a key parameter in determining an aircraft's range, the distance it can fly without refueling.Breguet’s aircraft range equation describes the relationship of range with airspeed, lift-to-drag ratio, specific fuel consumption, and the part of the total fuel fraction available for cruise, also known as the cruise fuel fraction, or cruise fuel weight fraction.[3]

In this context, the Breguet range is proportional to

Fighter aircraft

At today’s state of the art for jet fighter aircraft, fuel fractions of 29 percent and below typically yield subcruisers; 33 percent provides a quasi–supercruiser; and 35 percent and above are needed for useful supercruising missions. The U.S. F-22 Raptor’s fuel fraction is 29 percent,[4] Eurofighter is 31 percent, both similar to those of the subcruising F-4 Phantom II, F-15 Eagle and the Russian Mikoyan MiG-29 "Fulcrum". The Russian supersonic interceptor, the Mikoyan MiG-31 "Foxhound", has a fuel fraction of over 45 percent.[5] The Panavia Tornado had a relatively low internal fuel fraction of 26 percent, and frequently carried drop tanks.[6]

Civilian Aircraft

Airliners have a fuel fraction of less than half their takeoff weight, between 26% for medium-haul to 45% for long-haul.

General aviation

The Rutan Voyager took off on its 1986 around-the-world flight at 72 percent, the highest figure ever at the time.[17] Steve Fossett's Virgin Atlantic GlobalFlyer could attain a fuel fraction of nearly 83 percent, meaning that it carried more than five times its empty weight in fuel.[16]

See also

References

  1. ^ Brandt, Steven (2004). Introduction to Aeronautics: a Design Perspective. AIAA (American Institute of Aeronautics & Ast). p. 359. ISBN 1-56347-701-7.
  2. ^ Vinh, Nguyen (1993). Flight Mechanics of High-Performance Aircraft. Cambridge: Cambridge University Press. p. 139. ISBN 0-521-47852-9.
  3. ^ Filippone, Antonio (2006). Flight Performance of Fixed and Rotary Wing Aircraft. Elsevier. p. 426. ISBN 0-7506-6817-2.
  4. ^ 8200/27900 = 0.29
  5. ^ The F-22 Program FACT VERSUS FICTION Archived 2007-04-21 at the Wayback Machine by Everest E. Riccioni, Col. USAF, Ret.
  6. ^ Spick, Mike (2002). Brassey's Modern Fighters. Washington: Potomac Books. pp. 51–53. ISBN 1-57488-462-X.
  7. ^ "A380 Aircraft Characteristics – Airport and Maintenance Planning" (PDF). Airbus. December 2016.
  8. ^ a b 777-200LR/-300ER/-Freighter Airplane Characteristics for Airport Planning (PDF) (Technical report). Boeing. May 2015.
  9. ^ a b "A350 Aircraft Characteristics – Airport and Maintenance Planning" (PDF). Airbus. November 2016. Archived from the original (PDF) on 2016-11-28.
  10. ^ a b "787 Airplane Characteristics for Airport Planning" (PDF). Boeing. December 2015.
  11. ^ a b "A330 Aircraft Characteristics – Airport and Maintenance Planning" (PDF). Airbus. December 2016.
  12. ^ "A320 Aircraft Characteristics – Airport and Maintenance Planning" (PDF). Airbus. June 2016.
  13. ^ "737 Airplane Characteristics for Airport Planning" (PDF). Boeing. September 2013.
  14. ^ a b "CSeries brochure" (PDF). Bombardier. June 2015. Archived from the original (PDF) on 2015-09-08. Retrieved 2017-10-22.
  15. ^ "Concorde Airframe". heritage-concorde. Retrieved 2024-03-17.
  16. ^ a b "Virgin Atlantic Global Flyer | National Air and Space Museum". airandspace.si.edu. Retrieved 2024-03-17.
  17. ^ Noland, David (February 2005). "Burt Rutan and the Ultimate Solo". Popular Mechanics. Archived from the original on 2006-12-11.