stringtranslate.com

Функция сомбреро

Функция сомбреро 3D

Функция сомбреро (иногда называемая функцией besinc или функцией jinc [1] ) является двумерным аналогом функции sinc в полярных координатах и ​​так называется потому, что имеет форму шляпы сомбреро . Эта функция часто используется при обработке изображений . [2] Ее можно определить через функцию Бесселя первого рода ( ), где ρ 2 = x 2 + y 2 .

Коэффициент нормализации 2 делает somb(0) = 1. Иногда коэффициент π опускается, что дает следующее альтернативное определение:

Множитель 2 также часто опускается, что дает еще одно определение и приводит к тому, что максимум функции равен 0,5: [3]

Преобразование Фурье функции 2D круга ( ) является функцией сомбреро. Таким образом, функция сомбреро также появляется в профиле интенсивности дифракции в дальней зоне через круглую апертуру, известную как диск Эйри .

Ссылки

  1. ^ Ричард Э. Блахут (18 ноября 2004 г.). Теория формирования удаленного изображения. Cambridge University Press . стр. 82. ISBN 9781139455305.
  2. ^ Уильям Р. Хенди, Питер Нил Темпл Уэллс (1997-06-27). Восприятие визуальной информации. Springer. стр. 204. ISBN 978-0-387-94910-9.
  3. ^ Weisstein, Eric W. "Jinc Function". MathWorld--A Wolfram Web Resource . Получено 1 января 2019 г.