В шахматах относительная стоимость (или стоимость в очках ) — это стандартная стоимость, традиционно присваиваемая каждой фигуре . Оценки фигур не играют никакой роли в правилах шахмат, но полезны в качестве вспомогательного средства для оценки позиции.
Самая известная система присваивает 1 очко пешке , 3 очка коню или слону , 5 очков ладье и 9 очков ферзю . Однако системы оценки дают лишь приблизительное представление, а истинная стоимость фигуры во многом зависит от ее позиции.
Стоимость фигур существует, потому что расчет вплоть до мата в большинстве позиций находится за пределами досягаемости даже лучших компьютеров. Таким образом, игроки стремятся в первую очередь создать материальное преимущество, и для достижения этой цели необходимо количественно приблизиться к силе армии фигур. Такие стоимости фигур действительны и концептуально усреднены для тактически «тихих» позиций, где не произойдет немедленного тактического выигрыша материала. [1]
В следующей таблице приведено наиболее распространенное присвоение значений баллов. [2] [3] [4] [5] [6]
Самый старый вывод стандартных значений относится к Моденской школе ( Эрколе дель Рио , Джамбаттиста Лолли и Доменико Лоренцо Понциани ) в 18 веке [7] и частично основан на более ранней работе Пьетро Карреры . [8] Стоимость короля не определена, поскольку его нельзя захватить, не говоря уже о торговле, в ходе игры. Шахматные движки обычно присваивают королю произвольное большое значение, например, 200 очков или больше, чтобы указать, что неизбежная потеря короля из-за мата перевешивает все другие соображения. [9] Эндшпиль — это другая история, поскольку опасность мата меньше , что позволяет королю играть более активную роль. Король хорош в атаке и защите соседних фигур и пешек. Он лучше защищает такие фигуры, чем конь, и лучше атакует их, чем слон. [10] В целом, это делает ее более сильной, чем легкая фигура, но менее сильной, чем ладья, поэтому ее боевая ценность составляет около четырех очков. [11] [12]
Эта система имеет некоторые недостатки. Комбинации фигур не всегда равны сумме их частей; например, два слона противоположных цветов обычно стоят немного больше, чем слон плюс конь, а три младшие фигуры (девять очков) часто немного сильнее, чем две ладьи (десять очков) или ферзь (девять очков). [13] [14] Теоретик вариантов шахмат Ральф Бетца определил «эффект выравнивания», который приводит к снижению ценности более сильных фигур в присутствии более слабых фигур противника из-за того, что последние перекрывают доступ к части доски для первых, чтобы предотвратить исчезновение разницы в ценности путем торговли 1 к 1. Этот эффект приводит к тому, что 3 ферзя сильно проигрывают против 7 коней (когда оба начинают за стеной пешек), хотя добавленные значения фигур предсказывают, что игроку коня не хватает двух коней для равенства. [15] [1] В менее экзотическом случае это объясняет, почему обмен ладьями при дисбалансе ферзь против 3 миноров выгоден игроку ферзя, поскольку ладьи мешают ферзю, но не минорам. Добавление стоимости фигур, таким образом, является первым приближением, поскольку необходимо также учитывать, насколько хорошо фигуры взаимодействуют друг с другом (например, разноцветные слоны взаимодействуют очень хорошо), и как быстро перемещается фигура (например, фигура на короткой дистанции, удаленная от действия на большой доске, практически бесполезна). [1]
Оценка фигур зависит от многих параметров. Эдвард Ласкер сказал: «Сравнить относительную ценность различных фигур сложно, так как очень многое зависит от особенностей позиции...». Тем не менее, он сказал, что слон и конь (легкие фигуры) равны, [16] ладья стоит легкую фигуру плюс одну или две пешки , а ферзь стоит три легкие фигуры или две ладьи. [17] Ларри Кауфман предлагает следующие значения в миттельшпиле :
Пара слонов стоит 7,5 пешек — на полпешки больше, чем отдельные ценности ее составляющих слонов вместе взятых. (Хотя это было бы очень теоретической ситуацией, для пары слонов одного цвета такого бонуса нет. Согласно исследованиям Х. Г. Мюллера, три белопольных слона и один чернопольный получили бы только бонус в 0,5 очка, в то время как два слона каждого цвета получили бы бонус в 1 очко. Таким образом, можно было бы скорее думать об этом как о штрафе за отсутствие фигуры, хотя более несбалансированные комбинации, такие как 3:0 или 4:0, не тестировались.) [18] Положение фигур также имеет существенное значение, например, пешки вблизи краев стоят меньше, чем те, что находятся вблизи центра, пешки, близкие к превращению, стоят гораздо больше, [1] фигуры, контролирующие центр, стоят больше среднего, застрявшие фигуры (например, плохие слоны ) стоят меньше и т. д.
Хотя система очков 1-3-3-5-9 является наиболее распространенной, было предложено много других систем оценки фигур. В нескольких системах слон обычно считается немного более сильным, чем конь. [19] [20]
Примечание: если указана ценность короля, она используется при рассмотрении развития фигуры, ее силы в эндшпиле и т. д.
Ларри Кауфман в 2021 году дает более подробную систему, основанную на его опыте работы с шахматными движками, в зависимости от наличия или отсутствия ферзей. Он использует «middlegame» для обозначения позиций, где оба ферзя находятся на доске, «threshold» для позиций, где есть дисбаланс (один ферзь против ни одного или два ферзя против одного), и «endgame» для позиций без ферзей. (Кауфман не указал ценность ферзя в случаях midgame или endgame, поскольку в этих случаях у обеих сторон одинаковое количество ферзей, и это отменяется.) [47]
Вертикаль пешки также важна, потому что она не может измениться, кроме как взятием. Согласно Кауфману, разница невелика в эндшпиле (когда ферзи отсутствуют), но в миттельшпиле (когда ферзи присутствуют) разница существенна: [47]
В заключение: [47]
В эндшпиле: [47]
В пороговом случае (ферзь против других фигур): [47]
В случае миттельшпиля: [47]
Вышеизложенное написано для случая, когда на доске около десяти пешек (обычное число); ценность ладей уменьшается по мере добавления пешек и увеличивается по мере удаления пешек. [47]
Наконец, Кауфман предлагает упрощенную версию, которая избегает десятичных дробей: использовать традиционные значения P = 1, N = 3, B = 3+ и R = 5 при отсутствии ферзей на доске, но использовать P = 1, N = 4, B = 4+, R = 6, Q = 11, когда хотя бы у одного игрока есть ферзь. Суть в том, чтобы показать, что две легкие фигуры равны ладье и двум пешкам при наличии ферзей на доске, но только ладье и одной пешке без ферзей. [47]
Чемпион мира по шахматам по переписке Ганс Берлинер дает следующие оценки, основанные на опыте и компьютерных экспериментах:
Существуют корректировки для ряда пешек и корректировки для фигур в зависимости от того, насколько открыта или закрыта позиция. Слоны, ладьи и ферзи получают до 10 процентов больше ценности в открытых позициях и теряют до 20 процентов в закрытых позициях. Кони получают до 50 процентов в закрытых позициях и теряют до 30 процентов в углах и на краях доски. Ценность хорошего слона может быть как минимум на 10 процентов выше, чем у плохого слона . [48]
Существуют различные типы сдвоенных пешек ; см. диаграмму. Сдвоенные пешки белых на линии b являются лучшей ситуацией на диаграмме, поскольку продвижение пешек и размен могут сделать их несдвоенными и подвижными. Сдвоенная пешка b стоит 0,75 очков. Если бы черная пешка на a6 была на c6, было бы невозможно растворить сдвоенную пешку, и это стоило бы всего 0,5 очков. Сдвоенная пешка на f2 стоит около 0,5 очков. Вторая белая пешка на линии h стоит всего 0,33 очка, а дополнительные пешки на линии стоили бы всего 0,2 очка. [49]
Как уже отмечалось, когда впервые были сформулированы стандартные значения, [50] относительная сила фигур будет меняться по мере того, как игра переходит в эндшпиль . Пешки приобретают ценность по мере того, как становится ясен их путь к продвижению, и стратегия начинает вращаться вокруг их защиты или захвата до того, как они смогут продвинуться. Кони теряют ценность, поскольку их уникальная подвижность становится помехой при пересечении пустой доски. Ладьи и (в меньшей степени) слоны приобретают ценность, поскольку их линии движения и атаки менее затруднены. Ферзи немного теряют ценность, поскольку их высокая подвижность становится менее пропорционально полезной, когда есть меньше фигур для атаки и защиты. Ниже приведены некоторые примеры.
CJS Purdy дал второстепенным частям стоимость 3+1 ⁄ 2 очка в дебюте и миттельшпиле, но 3 очка в эндшпиле. [54]
Присвоение каждому типу предмета единственного, статического значения имеет свои недостатки.
Две легкие фигуры плюс две пешки иногда так же хороши, как ферзь. Две ладьи иногда лучше, чем ферзь и пешка. [55]
Во многих системах разница между ладьей и легкой фигурой составляет 2 очка , но большинство теоретиков оценивают эту разницу примерно в 1 очко.+1 ⁄ 2 балла (см. Обмен (шахматы) § Стоимость обмена ).
В некоторых открытых позициях ладья плюс пара слонов сильнее, чем две ладьи плюс конь. [56]
Позиции, в которых слон и конь могут быть обменены на ладью и пешку, встречаются довольно часто (см. диаграмму). В этой позиции белые не должны этого делать, например:
Кажется, что это равный обмен (6 очков за 6 очков), но это не так, поскольку две легкие фигуры лучше, чем ладья и пешка в миттельшпиле . [57]
В большинстве дебютов две мелкие фигуры лучше, чем ладья и пешка, и обычно по крайней мере так же хороши, как ладья и две пешки, пока позиция не станет значительно проще (т. е. в позднем миттельшпиле или эндшпиле ). Мелкие фигуры вступают в игру раньше ладей и лучше координируются, особенно когда на доске много фигур и пешек. С другой стороны, ладьи обычно блокируются пешками до поздней стадии игры. [58] Пахман также отмечает, что пара слонов почти всегда лучше, чем ладья и пешка. [59]
В этой позиции белые обменяли ферзя и пешку (10 очков) на три легкие фигуры (9 очков). У белых лучше, потому что три легкие фигуры обычно лучше ферзя из-за их большей подвижности, а лишняя пешка черных не так важна, чтобы изменить ситуацию. [60] Три легкие фигуры почти так же сильны, как две ладьи. [61]
В этой позиции черные впереди по материалу, но у белых лучше. Ферзевый фланг белых полностью защищен, а дополнительный ферзь черных не имеет цели; кроме того, белые гораздо активнее черных и могут постепенно наращивать давление на слабый королевский фланг черных.
В общем, приблизительная стоимость в сантипешках прыгуна на короткие дистанции с ходами на доске 8 × 8 составляет . Квадратичный член отражает возможность кооперации между ходами. [1]
Если фигуры асимметричны, то ходы вперед примерно в два раза ценнее, чем ходы вбок или назад, предположительно потому, что фигуры противника обычно можно найти в прямом направлении. Аналогично, захватные ходы обычно в два раза ценнее ходов без захвата (имеет значение для фигур, которые не захватывают тем же способом, которым ходят). Также, по-видимому, имеет значение достижение разных полей (например, игнорируя края доски, у короля и коня есть по 8 ходов, но за один или два хода конь может достичь 40 полей, тогда как король может достичь только 24). Для фигуры также ценно иметь ходы на поля, которые являются ортогонально смежными, так как это позволяет ей уничтожать одинокие проходные пешки (а также ставить мат королю, но это менее важно, так как обычно достаточно пешек доживают до позднего эндшпиля, чтобы можно было достичь мата путем превращения). Поскольку многие игры решаются превращением, эффективность фигуры в противостоянии или поддержке пешек является основной частью ее ценности. [1]
Неожиданный результат эмпирических компьютерных исследований заключается в том, что принцесса (соединение слон-конь) и императрица (соединение ладья-конь) имеют почти одинаковую ценность, хотя одинокая ладья на две пешки сильнее одинокого слона. Императрица примерно на 50 сентипешек слабее ферзя, а кардинал на 75 сентипешек слабее ферзя. Это, по-видимому, не имеет ничего общего с тем, что ограниченность цвета слона замаскирована в соединении, потому что добавление шага назад без взятия оказывается выгодным для слона примерно в той же степени, что и для коня; и это также не имеет ничего общего с тем, что отсутствие у слона матового потенциала замаскировано таким образом, потому что добавление шага назад (с взятием и без взятия) слону приносит ему примерно такую же выгоду, как и добавление такого шага коню. Более вероятным объяснением, по-видимому, является большое количество ортогональных контактов в схеме хода принцессы, с 16 такими контактами для принцессы по сравнению с 8 для императрицы и королевы: такие ортогональные контакты объяснили бы, почему даже в цилиндрических шахматах ладья все еще сильнее слона, хотя теперь они имеют одинаковую подвижность. Это делает принцессу чрезвычайно хорошей в уничтожении пешечных цепей, потому что она может атаковать как пешку, так и поле перед ней. [1]
Библиография