stringtranslate.com

Sum rules (quantum field theory)

In quantum field theory, a sum rule is a relation between a static quantity and an integral over a dynamical quantity. Therefore, they have a form such as:

where is the dynamical quantity, for example a structure function characterizing a particle, and is the static quantity, for example the mass or the charge of that particle.

Quantum field theory sum rules should not be confused with sum rules in quantum chromodynamics or quantum mechanics.

Properties

Many sum rules exist. The validity of a particular sum rule can be sound if its derivation is based on solid assumptions, or on the contrary, some sum rules have been shown experimentally to be incorrect, due to unwarranted assumptions made in their derivation. The list of sum rules below illustrate this.

Sum rules are usually obtained by combining a dispersion relation with the optical theorem,[1] using the operator product expansion or current algebra.[2]

Quantum field theory sum rules are useful in a variety of ways. They permit to test the theory used to derive them, e.g. quantum chromodynamics, or an assumption made for the derivation, e.g. Lorentz invariance. They can be used to study a particle, e.g. how does the spins of partons make up the spin of the proton. They can also be used as a measurement method. If the static quantity is difficult to measure directly, measuring and integrating it offers a practical way to obtain (providing that the particular sum rule linking to is reliable).

Although in principle, is a static quantity, the denomination of sum rule has been extended to the case where is a probability amplitude, e.g. the probability amplitude of Compton scattering,[1] see the list of sum rules below.

List of sum rules

(The list is not exhaustive)

See also

References

  1. ^ a b B. Pasquini and M. Vanderhaeghen (2018) “Dispersion theory in electromagnetic interactions” Ann. Rev. Nucl. Part. Sci. 68, 75
  2. ^ a b c d e f g A. Deur, S. J. Brodsky, G. F. de Teramond (2019) “The Spin Structure of the Nucleon” Rept. Prog. Phys. 82 076201
  3. ^ S. J. Adler (1966) “Sum Rules Giving Tests of Local Current Commutation Relations in High-Energy Neutrino Reactions” Phys. Rev. 143, 1144 (Erratum Phys. Rev. 151, 1342 (1966))
  4. ^ A. M. Baldin (1960) “Polarizability of nucleons” Nucl. Phys. 18, 310
  5. ^ “Hadron Polarizabilities” Ann.Rev.Nucl.Part.Sci. 64 (2014) 51-81
  6. ^ J. D. Bjorken (1966) “Applications of the chiral U(6)×U(6) algebra of current densities” Phys. Rev. 148, 1467
  7. ^ J. D. Bjorken (1970) “Inelastic scattering of polarized leptons from polarized nucleons” Phys. Rev. D 1, 1376
  8. ^ Broadhurst, D. J.; Kataev, A. L. (2002). "Bjorken unpolarized and polarized sum rules: Comparative analysis of large N(F) expansions". Phys. Lett. B. 544 (1–2): 154–160. arXiv:hep-ph/0207261. Bibcode:2002PhLB..544..154B. doi:10.1016/S0370-2693(02)02478-4. S2CID 17436687.
  9. ^ H. Burkhardt and W. N. Cottingham (1970) “Sum rules for forward virtual Compton scattering” Annals Phys. 56, 453
  10. ^ a b P.A.M Guichon, G.Q. Liu and A. W. Thomas (1995) “Virtual Compton scattering and generalized polarizabilities of the proton” Nucl. Phys. A 591, 606-638
  11. ^ A. V. Efremov, O. V. Teryaev and E. Leader (1997) “Exact sum rule for transversely polarized DIS” Phys. Rev. D 55, 4307
  12. ^ J. R. Ellis and R. L. Jaffe (1974) “Sum rule for deep-inelastic electroproduction from polarized protons” Phys. Rev. D 9, 1444 (1974)
  13. ^ S. Fubini, G. Furlan, and C. Rossetti (1965) “A dispersion theory of symmetry breaking” , Nuovo Cim. 40 1171.
  14. ^ S. B. Gerasimov (1965) “A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei” Sov. J. Nucl. Phys. 2, 430 (1966) [Yad. Fiz. 2, 598 (1965)]
  15. ^ S. D. Drell and A. C. Hearn (1966) “Exact sum rule for nucleon magnetic moments” Phys. Rev. Lett. 16, 908
  16. ^ M. Hosoda and K. Yamamoto (1966) “Sum rule for the magnetic moment of the Dirac particle” Prog. Theor. Phys. 36 (2), 425
  17. ^ K. Gottfried (1967) “Sum rule for high-energy electron-proton scattering” Phys. Rev. Lett. 18, 1174
  18. ^ D. J. Gross and C. H. Llewellyn Smith (1969) “High-energy neutrino-nucleon scattering, current algebra and partons” Nucl. Phys B14 337
  19. ^ J. C. Collins and D. E. Soper (1982) “Parton distribution and decay functions” Nucl. Phys. B194 445
  20. ^ Ji, Xiangdong (1997-01-27). "Gauge-Invariant Decomposition of Nucleon Spin". Physical Review Letters. 78 (4): 610–613. arXiv:hep-ph/9603249. Bibcode:1997PhRvL..78..610J. doi:10.1103/PhysRevLett.78.610. S2CID 15573151.
  21. ^ Ji, X. D. (1995). "QCD Analysis of the Mass Structure of the Nucleon". Physical Review Letters. 74 (6): 1071–1074. arXiv:hep-ph/9410274. doi:10.1103/PhysRevLett.74.1071.
  22. ^ Ji, X. D. (1995). "Breakup of hadron masses and the energy-momentum tensor of QCD". Physical Review D. 52: 271–281. arXiv:hep-ph/9502213. doi:10.1103/PhysRevD.52.271.
  23. ^ J. S. Schwinger (1975) “Source Theory Discussion of Deep Inelastic Scattering with Polarized Particles” Proc. Natl. Acad. Sci. 72, 1
  24. ^ S. Wandzura and F. Wilczek (1977) “Sum rules for spin-dependent electroproduction: Test of relativistic constituent quarks” Phys. Lett. B 72, 195