stringtranslate.com

Квантовая оптика

Квантовая оптика — это раздел атомной, молекулярной и оптической физики , изучающий, как отдельные кванты света, известные как фотоны , взаимодействуют с атомами и молекулами. Оно включает изучение корпускулярных свойств фотонов. Фотоны использовались для проверки многих нелогичных предсказаний квантовой механики , таких как запутанность и телепортация , и являются полезным ресурсом для квантовой обработки информации .

История

Энергия и импульс света, распространяющегося в ограниченном объеме пространства, квантованы в соответствии с целым числом частиц, известных как фотоны . Квантовая оптика изучает природу и эффекты света как квантованных фотонов. Первым крупным достижением, приведшим к этому пониманию, было правильное моделирование спектра излучения черного тела Максом Планком в 1899 году на основе гипотезы о том, что свет излучается в дискретных единицах энергии. Фотоэлектрический эффект был еще одним свидетельством этого квантования, как это объяснил Альберт Эйнштейн в статье 1905 года, открытие, за которое он должен был быть удостоен Нобелевской премии в 1921 году. Нильс Бор показал, что гипотеза квантования оптического излучения соответствует его теории квантованные уровни энергии атомов и, в частности, спектр излучения разряда водорода . Понимание взаимодействия света и материи после этих разработок имело решающее значение для развития квантовой механики в целом. Однако разделы квантовой механики, посвященные взаимодействию материи и света, в основном рассматривались как исследования материи, а не света; поэтому в 1960 году скорее говорили об атомной физике и квантовой электронике . Лазерная наука , то есть исследование принципов, конструкции и применения этих устройств, стала важной областью, и квантовая механика, лежащая в основе принципов лазера, теперь изучалась с большим упором на свойства света [ сомнительнообсудить ] , и название квантовая оптика стало привычным.

Поскольку наука о лазерах нуждалась в хороших теоретических основах, а также потому, что их исследования вскоре оказались очень плодотворными, интерес к квантовой оптике возрос. Следуя работам Дирака по квантовой теории поля , Джон Р. Клаудер , Джордж Сударшан , Рой Дж. Глаубер и Леонард Мандель применили квантовую теорию к электромагнитному полю в 1950-х и 1960- х годах, чтобы получить более детальное понимание фотодетектирования и статистики свет (см. степень когерентности ). Это привело к введению когерентного состояния как концепции, которая рассматривала различия между лазерным светом, тепловым светом, экзотическими сжатыми состояниями и т. д., поскольку стало понятно, что свет не может быть полностью описан, просто ссылаясь на электромагнитные поля , описывающие волны в классической теории. картина. В 1977 году Кимбл и др. продемонстрировали, что один атом испускает по одному фотону за раз, что является еще одним убедительным доказательством того, что свет состоит из фотонов. Впоследствии были открыты ранее неизвестные квантовые состояния света с характеристиками, отличными от классических состояний, например сжатый свет .

Разработка коротких и ультракоротких лазерных импульсов, создаваемых методами модуляции добротности и синхронизации моделей , открыла путь к изучению того, что стало известно как сверхбыстрые процессы. Были найдены приложения для исследований твердого тела (например, рамановской спектроскопии ) и изучены механические силы света на вещество. Последнее приводило к левитации и позиционированию облаков атомов или даже небольших биологических образцов в оптической ловушке или оптическом пинцете с помощью лазерного луча. Это, наряду с доплеровским охлаждением и сизифовым охлаждением , было важнейшей технологией, необходимой для достижения знаменитой конденсации Бозе-Эйнштейна .

Другими замечательными результатами являются демонстрации квантовой запутанности , квантовой телепортации и квантовых логических элементов . Последние представляют большой интерес для квантовой теории информации , предмета, который частично возник из квантовой оптики, частично из теоретической информатики . [1]

Сегодняшние области интересов исследователей квантовой оптики включают параметрическое преобразование с понижением частоты , параметрические колебания , даже более короткие (аттосекундные) световые импульсы, использование квантовой оптики для получения квантовой информации , манипулирование отдельными атомами, конденсаты Бозе-Эйнштейна , их применение и способы манипулирования. они (подобласть, часто называемая атомной оптикой ), когерентные идеальные поглотители и многое другое. Темы, отнесенные к термину «квантовая оптика», особенно применительно к инженерным и технологическим инновациям, часто подпадают под современный термин « фотоника» .

За работы в области квантовой оптики было присуждено несколько Нобелевских премий . Были награждены:

Концепции

Согласно квантовой теории , свет можно рассматривать не только как электромагнитную волну , но и как «поток» частиц, называемых фотонами , которые движутся со скоростью c , вакуумной скоростью света . Эти частицы следует рассматривать не как классические бильярдные шары , а как квантово-механические частицы, описываемые волновой функцией , распространяющейся в конечной области.

Каждая частица несет один квант энергии, равный hf , где hпостоянная Планка , а f — частота света. Эта энергия, которой обладает одиночный фотон, в точности соответствует переходу между дискретными уровнями энергии в атоме (или другой системе), испустившей фотон; материальное поглощение фотона — обратный процесс. Объяснение Эйнштейном спонтанного излучения также предсказало существование вынужденного излучения — принципа, на котором основан лазер . Однако фактическое изобретение мазера ( и лазера) много лет спустя зависело от метода создания инверсной населенности .

Использование статистической механики является фундаментальным для концепций квантовой оптики: свет описывается в терминах операторов поля для рождения и уничтожения фотонов, то есть на языке квантовой электродинамики .

Часто встречающимся состоянием светового поля является когерентное состояние , введенное ЕС Джорджем Сударшаном в 1960 году. Это состояние, которое можно использовать для приблизительного описания выходной мощности одночастотного лазера, значительно превышающей лазерный порог, демонстрирует пуассоновское число фотонов. статистика. Посредством определенных нелинейных взаимодействий когерентное состояние может быть преобразовано в сжатое когерентное состояние путем применения оператора сжатия, который может демонстрировать супер- или субпуассоновскую статистику фотонов. Такой свет называется сжатым светом . Другие важные квантовые аспекты связаны с корреляцией статистики фотонов между различными пучками. Например, спонтанное параметрическое преобразование с понижением частоты может генерировать так называемые «двойные лучи», где (в идеале) каждый фотон одного луча связан с фотоном другого луча.

Атомы рассматриваются как квантово-механические осцилляторы с дискретным энергетическим спектром , при этом переходы между собственными энергетическими состояниями обусловлены поглощением или излучением света согласно теории Эйнштейна.

Для твердого тела используются модели энергетических зон физики твердого тела . Это важно для понимания того, как свет обнаруживается твердотельными устройствами, обычно используемыми в экспериментах.

Квантовая электроника

Квантовая электроника — термин, который использовался в основном между 1950-ми и 1970-ми годами [7] для обозначения области физики , занимающейся влиянием квантовой механики на поведение электронов в веществе, а также их взаимодействие с фотонами . Сегодня ее редко рассматривают как самостоятельную подобласть, и она была поглощена другими областями. Физика твердого тела регулярно учитывает квантовую механику и обычно занимается электронами. Конкретные применения квантовой механики в электронике исследуются в рамках физики полупроводников . Этот термин также охватывал основные процессы работы лазера , которые сегодня изучаются как тема квантовой оптики. Использование этого термина перекрывало ранние работы по квантовому эффекту Холла и квантовым клеточным автоматам .

Смотрите также

Примечания

  1. ^ Нильсен, Майкл А.; Чуанг, Исаак Л. (2010). Квантовые вычисления и квантовая информация (изд. к 10-летию). Кембридж: Издательство Кембриджского университета. ISBN 978-1107002173.
  2. ^ «Нобелевская премия по физике 2022». Нобелевский фонд. Проверено 9 июня 2023 г.
  3. ^ «Нобелевская премия по физике 2012». Нобелевский фонд. Проверено 9 октября 2012 г.
  4. ^ «Нобелевская премия по физике 2005 г.». Нобелевская премия.org . Проверено 14 октября 2015 г.
  5. ^ «Нобелевская премия по физике 2001 г.». Нобелевская премия.org . Проверено 14 октября 2015 г.
  6. ^ «Нобелевская премия по физике 1997 г.». Нобелевская премия . Проверено 14 октября 2015 г.
  7. ^ Бруннер, Витлоф; Радлов, Вольфганг; Юнге, Клаус (1975). Квантенэлектроник (на немецком языке). Deutscher Verlag der Wissenschaften .

Рекомендации

дальнейшее чтение

Внешние ссылки

Послушайте эту статью ( 10 минут )
Разговорная иконка Википедии
Этот аудиофайл был создан на основе редакции этой статьи от 11 августа 2009 г. и не отражает последующие изменения. ( 11 августа 2009 г. )