stringtranslate.com

Skylake (microarchitecture)

Skylake[6][7] is Intel's codename for its sixth generation Core microprocessor family that was launched on August 5, 2015,[8] succeeding the Broadwell microarchitecture.[9] Skylake is a microarchitecture redesign using the same 14 nm manufacturing process technology[10] as its predecessor, serving as a tock in Intel's tick–tock manufacturing and design model. According to Intel, the redesign brings greater CPU and GPU performance and reduced power consumption. Skylake CPUs share their microarchitecture with Kaby Lake, Coffee Lake, Whiskey Lake, and Comet Lake CPUs.

Skylake is the last Intel platform on which Windows earlier than Windows 10 are officially supported by Microsoft,[11] although enthusiast-created modifications are available that disabled the Windows Update check and allowed Windows 8.1 and earlier to continue to receive Windows Updates on this and later platforms.[12][13][14]

Some of the processors based on the Skylake microarchitecture are marketed as sixth-generation Core.[15][16][17]

Intel officially declared end of life and discontinued Skylake LGA 1151 CPUs (except Xeon E3 v5) on March 4, 2019.[18]

Development history

Skylake's development, as with previous processors such as Banias, Dothan, Conroe, Sandy Bridge, and Ivy Bridge, was primarily undertaken by Intel Israel at its engineering research center in Haifa, Israel.[19] The final design was largely an evolution of Haswell, with minor improvements to performance and several power-saving features being added.[20] A major priority of Skylake's design was to design a microarchitecture for envelopes as low as 4.5W to embed within tablet computers and notebooks in addition to higher-power desktop computers and servers.[21]

In September 2014, Intel announced the Skylake microarchitecture at the Intel Developer Forum in San Francisco, and that volume shipments of Skylake CPUs were scheduled for the second half of 2015. The Skylake development platform was announced to be available in Q1 2015. During the announcement, Intel also demonstrated two computers with desktop and mobile Skylake prototypes: the first was a desktop testbed system, running the latest version of 3DMark, while the second computer was a fully functional laptop, playing 4K video.[22]

An initial batch of Skylake CPU models (i5-6600K and i7-6700K) was announced for immediate availability during the Gamescom on August 5, 2015,[23] unusually soon after the release of its predecessor, Broadwell, which had suffered from launch delays.[24] Intel acknowledged in 2014 that moving from 22 nm (Haswell) to 14 nm (Broadwell) had been its most difficult process to develop yet, causing Broadwell's planned launch to slip by several months;[25] yet, the 14 nm production was back on track and in full production as of Q3 2014.[26] Industry observers had initially believed that the issues affecting Broadwell would also cause Skylake to slip to 2016, but Intel was able to bring forward Skylake's release and shorten Broadwell's release cycle instead.[27][28] As a result, the Broadwell architecture had an unusually short run.[27]

Overclocking of unsupported processors

Officially Intel supported overclocking of only the K and X versions of Skylake processors. However, it was later discovered that other non-K chips could be overclocked by modifying the base clock value – a process made feasible by the base clock applying only to the CPU, RAM, and integrated graphics on Skylake. Through beta UEFI firmware updates, some motherboard vendors, such as ASRock (which prominently promoted it under the name Sky OC) allowed the base clock to be modified in this manner.[29][30]

When overclocking unsupported processors using these UEFI firmware updates, several issues arise:

These issues are partly caused by the power management of the processor needing to be disabled for base clock overclocking to work.[31]

In February 2016, however, an ASRock firmware update removed the feature. On February 9, 2016, Intel announced that it would no longer allow such overclocking of non-K processors, and that it had issued a CPU microcode update that removes the function.[32][33][34] In April 2016, ASRock started selling motherboards that allow overclocking of unsupported CPUs using an external clock generator.[35][36]

Operating system support

In January 2016, Microsoft announced that it would end support of Windows 7 and Windows 8.1 on Skylake processors effective July 17, 2017; after this date, only the most critical updates for the two operating systems would be released for Skylake users if they have been judged not to affect the reliability of the OS on older hardware (until July 31, 2019; August 2019 critical update requires at least Windows 10), and Windows 10 would be the only Microsoft Windows platform officially supported on Skylake and on later Intel CPU microarchitectures beginning with Skylake's successor Kaby Lake. Terry Myerson stated that Microsoft had to make a large investment in order to reliably support Skylake on older versions of Windows, and that future generations of processors would require further investments. Microsoft also stated that due to the age of the platform, it would be challenging for newer hardware, firmware, and device driver combinations to properly run under Windows 7.[37][38]

On March 18, 2016, in response to criticism over the move, primarily from enterprise customers, Microsoft announced revisions to the support policy, changing the cutoff for support and non-critical updates to July 17, 2018, and stating that Skylake users would receive all critical security updates for Windows 7 and 8.1 through the end of extended support.[39][40] In August 2016, citing "a strong partnership with our OEM partners and Intel", Microsoft stated that it would continue to fully support 7 and 8.1 on Skylake through the end of their respective lifecycles.[41][42] In addition, an enthusiast-created modification was released that disabled the Windows Update check and allowed Windows 8.1 and earlier to continue to be updated on this and later platforms.[43]

As of Linux kernel 4.10, Skylake mobile power management is supported with most Package C states supported seeing some use. Linux 4.11 enables Frame-Buffer Compression for the integrated graphics chipset by default, which lowers power consumption.[44]

Skylake is fully supported on OpenBSD 6.2 and later, including accelerated graphics.[45]

For Windows 11, only the high-end Skylake-X processors are officially listed as compatible.[46] All other Skylake processors are not officially supported due to security concerns.[47] However, it is still possible to manually upgrade using an ISO image (as Windows 10 users on those processors will noCXt be offered to upgrade to Windows 11 via Windows Update), or perform a clean installation as long as the system has Trusted Platform Module (TPM) 2.0 enabled,[48] but the user must accept that they will not be entitled to receive updates, and that damage caused by using Windows 11 on an unsupported configuration are not covered by the manufacturer's warranty.[49][50]

Features

Skylake i7-6700K
Skylake i7-6700K: bottom view

Like its predecessor, Broadwell, Skylake is available in five variants, identified by the suffixes S (SKL-S), X (SKL-X), H (SKL-H), U (SKL-U), and Y (SKL-Y). SKL-S and SKL-X contain overclockable K and X variants with unlocked multipliers.[51] The H, U and Y variants are manufactured in ball grid array (BGA) packaging, while the S and X variants are manufactured in land grid array (LGA) packaging using a new socket, LGA 1151 (LGA 2066 for Skylake X).[52] Skylake is used in conjunction with Intel 100 Series chipsets, also known as Sunrise Point.[53]

The major changes between the Haswell and Skylake architectures include the removal of the fully integrated voltage regulator (FIVR) introduced with Haswell.[54] On the variants that will use a discrete Platform Controller Hub (PCH), Direct Media Interface (DMI) 2.0 is replaced by DMI 3.0, which allows speeds of up to 8 GT/s.

Skylake's U and Y variants support one DIMM slot per channel, while H and S variants support two DIMM slots per channel.[52] Skylake's launch and sales lifespan occur at the same time as the ongoing SDRAM market transition, with DDR3 SDRAM memory gradually being replaced by DDR4 SDRAM. Rather than working exclusively with DDR4, the Skylake microarchitecture remains backward compatible by interoperating with both types of memory. Accompanying the microarchitecture's support for both memory standards, a new SO-DIMM type capable of carrying either DDR3 or DDR4 memory chips, called UniDIMM, was also announced.[55]

Skylake's few P variants have a reduced on-die graphics unit (12 execution units enabled instead of 24 execution units) over their direct counterparts; see the table below. In contrast, with Ivy Bridge CPUs the P suffix was used for CPUs with completely disabled on-die video chipset.

Other enhancements include Thunderbolt 3.0, Serial ATA Express, Iris Pro graphics with Direct3D feature level 12_1 with up to 128 MB of L4 eDRAM cache on certain SKUs.[56] The Skylake line of processors retires VGA support,[57] while supporting up to three monitors connected via HDMI 1.4, DisplayPort 1.2 or Embedded DisplayPort (eDP) interfaces.[58] HDMI 2.0 (4K@60 Hz) is only supported on motherboards equipped with Intel's Alpine Ridge Thunderbolt controller.[59]

The Skylake instruction set changes include Intel MPX (Memory Protection Extensions) and Intel SGX (Software Guard Extensions). Future Xeon variants will also have Advanced Vector Extensions 3.2 (AVX-512F).[3][4]

Skylake-based laptops were predicted to use wireless technology called Rezence for charging, and other wireless technologies for communication with peripherals. Many major PC vendors agreed to use this technology in Skylake-based laptops; however, no laptops were released with the technology as of 2019.[60][61]

The integrated GPU of Skylake's S variant supports on Windows DirectX 12 Feature Level 12_1, OpenGL 4.6 with latest Windows 10 driver update[62] (OpenGL 4.5 on Linux[63]) and OpenCL 3.0 standards. The Quick Sync video engine now includes support for VP9 (GPU accelerated decode only), VP8 and HEVC (hardware accelerated 8-bit encode/decode and GPU accelerated 10-bit decode), and supports for resolutions up to 4096 × 2048.[64][65][66]

Intel also released unlocked (capable of overclocking) mobile Skylake CPUs.[67]

Unlike previous generations, Skylake-based Xeon E3 no longer works with a desktop chipset that supports the same socket, and requires either the C232 or the C236 chipset to operate.

Started from Skylake, Intel had removed IDE mode (of SATA controller) and EHCI controller from its client platform chipsets.

Known issues

Short loops with a specific combination of instruction use may cause unpredictable system behavior on CPUs with hyperthreading. A microcode update was issued to fix the issue.[68]

Skylake is vulnerable to Spectre attacks.[69]In fact, it is more vulnerable than other processors because it uses indirect branch speculation not just on indirect branches but also when the return prediction stack underflows.

The latency for the spinlock PAUSE instruction has been increased dramatically (from the usual 10 cycles to 141 cycles in Skylake), which can cause performance issues with older programs or libraries using pause instructions.[70] Intel documents the increased latency as a feature that improves power efficiency.[71]

Architecture changes compared to Broadwell microarchitecture

CPU

GPU

I/O

Other

Configurations

Skylake processors are produced in seven main families: Y, U, H, S, X, W, and SP. Multiple configurations are available within each family:[52]

List of Skylake processor models

Mainstream desktop processors

Core i7-6700 die shot

Common features of the mainstream desktop Skylake CPUs:

High-end desktop processors (Skylake-X)

Common features of the high-performance Skylake-X CPUs:

Core i7-7820X die shot

Xeon high-end desktop processors (Skylake-X)

Mobile processors

For mobile workstation processors, see Server processors

Workstation processors

Server processors

E3 series server chips all consist of System Bus 9 GT/s, maximum memory bandwidth of 34.1 GB/s dual channel memory. Unlike its predecessor, the Skylake Xeon CPUs require C230 series (C232/C236) or C240 series (C242/C246) chipset to operate, with integrated graphics working only with C236 and C246 chipsets. Mobile counterparts uses CM230 and CM240 series chipsets.

Skylake-SP (14 nm) Scalable Performance

Xeon Bronze and Silver (dual processor)

Xeon Gold (quad processor)

Xeon Platinum (octal processor)

See also

References

  1. ^ "Intel Core i7-6700K Processor (8M Cache, up to 4.20 GHz)". Ark.intel.com. Retrieved January 24, 2018.
  2. ^ Alcorn, Paul (June 3, 2016). "Skylake Xeon Platforms Spotted, Purley Makes A Quiet Splash At Computex". Tom's Hardware. Retrieved April 7, 2023.
  3. ^ a b c "AVX-512 SIMD enabled only on Xeon models of SkyLake". Bits and Chips. February 27, 2015.
  4. ^ a b "Skylake processors for the PC will not support the AVX-512". Hardware-boom.com. March 3, 2015. Archived from the original on November 5, 2015. Retrieved January 24, 2018.
  5. ^ Cutress, Ian (August 5, 2015). "The Intel Skylake Mobile and Desktop Launch, with Architecture Analysis". AnandTech. Retrieved September 18, 2015.
  6. ^ a b "The Compute Architecture of Intel® Processor Graphics Gen9" (PDF). Intel. Retrieved January 24, 2018.
  7. ^ "Intel® 64 and IA-32 Architectures Optimization Reference Manual" (PDF). Intel. Retrieved January 24, 2018.
  8. ^ "Intel Unleashes Next-Gen Enthusiast Desktop PC Platform at Gamescom". Intel Newsroom. August 5, 2015. Retrieved August 5, 2015.
  9. ^ Demerjian, Charlie (March 31, 2011). "After Intel's Haswell comes Broadwell". SemiAccurate. Retrieved January 4, 2012.
  10. ^ "Intel Presentation: 22nm Details" (PDF). Intel. Retrieved January 4, 2012.
  11. ^ Allan, Darren (August 31, 2016). "Intel's latest CPUs will only support Windows 10". TechRadar. Retrieved June 8, 2017.
  12. ^ "There's a patch to reinstate Windows 7 & 8.1 on Kaby Lake CPUs | TheINQUIRER". April 20, 2017. Archived from the original on April 20, 2017. Retrieved March 9, 2020.{{cite web}}: CS1 maint: unfit URL (link)
  13. ^ pilao (March 3, 2020), zeffy/wufuc, retrieved March 9, 2020
  14. ^ Przemysław (February 9, 2020), p-lider/WuaCpuFix, retrieved March 9, 2020
  15. ^ "6th Generation Intel® Core i7-6700K and i5-6600K Processors". Intel. Retrieved May 25, 2018.
  16. ^ "6th Generation Intel® Processor Family". Intel. Retrieved May 25, 2018.
  17. ^ Mah Ung, Gordon (August 18, 2015). "Why Intel calls Skylake a 6th-generation CPU". PCWorld. Retrieved May 25, 2018.
  18. ^ "Product Change Notification" (PDF). Retrieved August 17, 2023.
  19. ^ "Intel in Israel: A Old Relationship Faces New Criticism". Knowledge.wharton.upenn.edu. Retrieved January 24, 2018.
  20. ^ "The many tricks Intel Skylake uses to go faster and use less power". Ars Technica. Condé Nast. August 19, 2015. Retrieved November 7, 2021.
  21. ^ Intel Introduced its 6th Generation Intel Core Published September 2, 2015, techtime.co.il
  22. ^ Shvets, Gennadiy (September 10, 2014). "Intel announces Skylake microarchitecture". CPU-World. Retrieved January 24, 2018.
  23. ^ "Intel to Debut its Core Skylake Processors at Gamescom 2015". TechPowerUp. June 19, 2015.
  24. ^ "Intel Corporation Launching Broadwell, Skylake Chips Back to Back". ValueWalk. September 16, 2014. Retrieved October 17, 2014.
  25. ^ Ryan Smith. "AnandTech – Intel's 14nm Technology in Detail". Anandtech.com. Retrieved January 24, 2018.
  26. ^ "Intel Broadwell and Skylake client CPUs both launching in 2015". Hexus.net. September 9, 2014. Retrieved January 24, 2018.
  27. ^ a b Hruska, Joel (July 14, 2014). "Intel's 14nm puzzle: As Skylake details leak, everybody asks – is the chip coming in 2015 or not?". ExtremeTech. Retrieved October 17, 2014.
  28. ^ Arora, Piyush (October 15, 2014). "Intel: Skylake Development Appears To Be On Schedule". Seeking Alpha. Retrieved January 24, 2018.
  29. ^ Porter, Matt (February 9, 2016). "Intel puts a stop to overclocking on non-K Skylake CPUs". PC Gamer. Retrieved February 9, 2016.
  30. ^ "Intel Skylake Non-K OC KOed by ASRock". Hexus. February 5, 2016. Retrieved February 9, 2016.
  31. ^ "Non-K overclocking". hwbot.org. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  32. ^ Cutress, Ian (December 11, 2015). "BCLK Overclocking Intel's non-K Skylake Processors: Coming Soon". AnandTech. Retrieved February 9, 2016.
  33. ^ "It's official: Intel shuts down the cheap overclocking party by closing Skylake loophole". PCWorld. February 8, 2016. Retrieved February 9, 2016.
  34. ^ "Yes, you can overclock cheap Intel Skylake chips". PC World. December 11, 2015. Retrieved February 9, 2016.
  35. ^ "New ASRock motherboards sport external clock generators for Intel CPU overclocking |". ExtremeTech. Retrieved April 10, 2016.
  36. ^ 株式会社インプレス (April 7, 2016). "独自OC機能を備えたH170マザーがASRockから登場、計2モデル - AKIBA PC Hotline!". AKIBA PC Hotline! (in Japanese). Retrieved April 10, 2016.
  37. ^ "Skylake users given 18 months to upgrade to Windows 10". Ars Technica. January 16, 2016. Retrieved January 16, 2016.
  38. ^ Bott, Ed. "Microsoft updates support policy: New CPUs will require Windows 10". ZDNet.com. CBS Interactive. Retrieved January 16, 2016.
  39. ^ "Skylake support on Windows 7 and 8.1 given a one-year extension". Ars Technica. March 18, 2016. Retrieved March 18, 2016.
  40. ^ "Microsoft backtracks on Windows 7 support deadline". Computerworld.com. March 18, 2016. Retrieved March 18, 2016.
  41. ^ Larsen, Shad (August 11, 2016). "Updates to Silicon Support Policy for Windows". Windows business blog. Microsoft. Archived from the original on April 25, 2017. Retrieved May 9, 2017.
  42. ^ Jo Foley, Mary (August 11, 2016). "Microsoft extends again support for Windows 7, 8.1 Skylake-based devices". ZDNet. CBS Interactive. Retrieved May 9, 2017.
  43. ^ "There's a patch to reinstate Windows 7 & 8.1 on Kaby Lake CPUs". Theinquirer.net. Archived from the original on December 22, 2019. Retrieved January 24, 2018.{{cite web}}: CS1 maint: unfit URL (link)
  44. ^ "Linux 4.11 To Enable Frame-Buffer Compression By Default For Skylake+ - Phoronix". Phoronix.com.
  45. ^ "OpenBSD 6.2". Retrieved October 10, 2018.
  46. ^ "Windows processor requirements Windows 11 supported Intel processors". docs.microsoft.com. Retrieved October 5, 2021.
  47. ^ "Update on Windows 11 minimum system requirements". Windows Insider Blog. June 28, 2021. Retrieved October 5, 2021.
  48. ^ Warren, Tom (August 27, 2021). "Microsoft won't stop you installing Windows 11 on older PCs". The Verge. Retrieved October 5, 2021.
  49. ^ Hollister, Sean (September 21, 2021). "Windows 11 won't stop older PCs, but it might make you sign this waiver". The Verge. Retrieved October 5, 2021.
  50. ^ Hollister, Sean (August 28, 2021). "Microsoft is threatening to withhold Windows 11 updates if your CPU is old". The Verge. Retrieved October 5, 2021.
  51. ^ "Intel Skylake-S desktop CPUs expected at IDF 2015 in August". February 17, 2015.
  52. ^ a b c Pirzada, Syed Muhammad Usman (June 27, 2014). "Massive Intel 14nm Skylake Leak – Multiple eDRAM Configurations and Desktop Variant to have Configurable TDP". WCCFTech. WCCFTech Prvt. Ltd. Retrieved June 28, 2014.
  53. ^ "Intel Core Skylake CPUs Accompanied by 100-series Chipset". Techpowerup.com. May 5, 2014. Retrieved May 8, 2014.
  54. ^ Pirzada, Syed Muhammad Usman (June 5, 2014). "Intel to Abandon the Internal Voltage Regulator (IVR) with Skylake Microarchitecture". WCCFTech. WCCFTech Prvt. Ltd. Retrieved June 28, 2014.
  55. ^ "How Intel Plans to Transition Between DDR3 and DDR4 for the Mainstream". techpowerup.com. September 14, 2014. Retrieved November 19, 2014.
  56. ^ "Intel's 6th Generation Skylake Processors Scheduled For 2H 2015 – 5th Generation Broadwell in Spring '15, Updates 2015–2016 Mobility Roadmap". WCCFtech. November 24, 2014.
  57. ^ "ARK | Intel® Core i7-6700K Processor (8M Cache, up to 4.20 GHz)". Ark.intel.com. Retrieved August 6, 2015.
  58. ^ "[Phoronix] Intel Publishes Initial Skylake Linux Graphics Support". Phoronix.com. Retrieved January 24, 2018.
  59. ^ Cutress, Ian. "Intel Skylake Z170 Motherboards: A Quick Look at 55+ New Products". Anandtech.com. Retrieved August 6, 2015.
  60. ^ "Wire-free PCs, tablets and phones coming in 2015 says Intel". ZDNet. September 10, 2014.
  61. ^ "Counterclockwise: the wireless charging format wars". GSMArena. November 11, 2018.
  62. ^ "DRIVER VERSION: 31.0.101.2115" (PDF). Downloadmirror.intel.com. Retrieved December 29, 2022.
  63. ^ "Mesa 13.0 Released With Intel OpenGL 4.5, RADV Radeon Vulkan Driver". Phoronix.com.
  64. ^ "Intel Skylake-S CPUs and 100-series Chipsets Detailed in Apparent Leak". NDTV Gadgets. April 17, 2015.
  65. ^ "Skylake's graphics architecture: Intel is still gunning for dedicated GPUs -- IDF15". Retrieved August 18, 2015.
  66. ^ T S, Ganesh (August 26, 2015). "Intel's Skylake GPU - Analyzing the Media Capabilities". AnandTech. Retrieved July 6, 2022.
  67. ^ "Intel Unleashes Next-Gen Enthusiast Desktop PC Platform at Gamescom – Technology@Intel". Technology@Intel. August 5, 2015. Retrieved August 10, 2015.
  68. ^ "[Updated] Critical Flaw In Intel Skylake And Kaby Lake HyperThreading Discovered Requiring BIOS Microcode Fix - HotHardware". Hothardware.com. June 25, 2017. Retrieved January 24, 2018.
  69. ^ "Re: [RFC 09/10] x86/enter: Create macros to restrict/unrestrict Indirect Branch Speculation [LWN.net]". Lwn.net. Retrieved January 24, 2018.
  70. ^ Alois Kraus (June 16, 2018). "Why Skylake CPUs Are Sometimes 50% Slower – How Intel Has Broken Existing Code".
  71. ^ "Intel® 64 and IA-32 Architectures Optimization Reference Manual 248966-033" (PDF). June 2016.
  72. ^ [1] [dead link]
  73. ^ "Intel talks up new processor releases and celebrates an anniversary". Pcgamer. Retrieved April 16, 2016.
  74. ^ a b "Intel Skylake Processors To Launch in 2H 2015 – Compatible With LGA 1151 Socket and Z170 Chipset, Will Feature DDR3 / DDR4 Memory Support". Wccftech.com. June 4, 2014. Retrieved June 9, 2014.
  75. ^ Howse, Brett. "Examining Intel's New Speed Shift Tech on Skylake: More Responsive Processors". Anandtech.com. Retrieved April 16, 2016.
  76. ^ "Skylake (client) - Microarchitectures - Intel - WikiChip". en.wikichip.org. Retrieved February 8, 2021.
  77. ^ "Cheat sheet for Intel Processor Trace with Linux perf and GDB at Andi Kleen's blog".
  78. ^ "Intel Skylake: Core i7-6700K und i5-6600K im Test". PC GAMES HARDWARE ONLINE. August 5, 2015. Retrieved August 5, 2015.
  79. ^ "Game Dev - Graphics API Developer's Guide For 6th Generation Intel® Core Processors | Intel® Developer Zone". Software.intel.com. Retrieved April 16, 2016.
  80. ^ Cutress, Ian. "The Intel 6th Gen Skylake Review: Core i7-6700K and i5-6600K Tested". Anandtech.com. Retrieved January 24, 2018.
  81. ^ "Intel's Cannonlake 10nm Microarchitecture is Due For 2016 – Compatible On Union Bay With Union Point PCH". Wccftech.com. June 6, 2014. Retrieved June 15, 2014.
  82. ^ Shilov, Anton (April 4, 2012). "Intel to Start DDR4 Usage with Server Platforms in 2014". X-bit laboratories. Archived from the original on October 12, 2013. Retrieved October 5, 2013.
  83. ^ "Intel Skylake Could Feature Dual DDR3/DDR4 Memory Support with Double IMCs". Techpowerup.com. September 14, 2014. Retrieved November 20, 2014.
  84. ^ "GIGABYTE – Motherboard – Socket 1151 – GA-Z170-HD3 DDR3 (rev. 1.0)". Retrieved September 7, 2015.
  85. ^ "Skylake's IMC Supports Only DDR3L". September 28, 2015. Retrieved September 29, 2015.
  86. ^ Kirsch, Nathan (May 5, 2014). "Intel 2015 Platform Roadmap Shows Skylake CPUs, 100 Series Chipset and DDR4". Legit Reviews. Retrieved May 8, 2014.
  87. ^ "Intel 14nm Skylake Desktop 'Sky Bay Platform Detailed – TDPs For DT, H-Series, U-Series, Y-Series Unveiled, Quad Core With GT4e GPU Has 95W TDP". Wccftech.com. June 5, 2014. Retrieved June 9, 2014.
  88. ^ "6th Generation Intel® Core Processor Family Datasheet, Vol. 1". Intel. Retrieved August 22, 2015.
  89. ^ "GIGABYTE – Motherboard – Socket 1151 – GA-Z170-HD3 DDR3 (rev. 1.0)". Gigabyte.com. Retrieved November 2, 2015.
  90. ^ "Z170-P D3 – Overview". Asus. Retrieved November 2, 2015.
  91. ^ "Z170 Pro4/D3". ASRock. Retrieved November 2, 2015.
  92. ^ Cutress, Ian (August 5, 2015). "The Intel 6th Gen Skylake Review: Core i7-6700K and i5-6600K Tested". AnandTech. Retrieved January 24, 2018.
  93. ^ "Intel Core X Series Processor Overview" (PDF). Intel Newsroom. Retrieved January 24, 2018.
  94. ^ Cutress, Ian (August 7, 2017). "Intel Finalizes Skylake-X Processor Specifications: 18-Cores, 4.4 GHz Turbo, 165W on September 25th". AnandTech. Retrieved September 20, 2017.
  95. ^ "Intel Unveils Full Intel® Core X-series Processor Family Specs". Intel Newsroom. August 7, 2017. Archived from the original on August 7, 2017. Retrieved August 7, 2017.
  96. ^ Cutress, Ian. "Intel's Basin Falls Skylake-X Refresh: Core i9-9980XE with up to 15% Better Power Efficiency". Anandtech.com. Retrieved October 27, 2018.
  97. ^ Cutress, Dr Ian. "The Intel Core i9-9990XE Review: All 14 Cores at 5.0 GHz". www.anandtech.com. Retrieved January 4, 2020.
  98. ^ "Intel debuts 9th-generation Core chips, including Core i9 and X-series parts, with a few twists". October 8, 2018.
  99. ^ Paul Alcorn (February 15, 2023). "Intel Launches Overclockable Xeon W CPUs up to 56 Cores: a Return to HEDT-Class Chips". Tom's Hardware. Retrieved February 16, 2023.
  100. ^ a b c d "The Intel Xeon W Review: W-2195, W-2155, W-2123, W-2104 and W-2102 Tested". www.anandtech.com. Retrieved May 4, 2019.
  101. ^ a b c d "Apple's iMac Pro Xeon W are ready". WikiChip Fuse. December 24, 2017. Retrieved May 4, 2019.

External links