В математике и обработке сигналов Z -преобразование преобразует дискретный по времени сигнал , который представляет собой последовательность действительных или комплексных чисел , в комплексное частотное представление ( z-область или z-плоскость ). [1] [2]
Его можно считать эквивалентом преобразования Лапласа в дискретном времени ( s-область или s-плоскость ). [3] Это сходство исследуется в теории исчисления временной шкалы .
В то время как непрерывное по времени преобразование Фурье вычисляется на вертикальной оси s-домена (мнимая ось), дискретное по времени преобразование Фурье вычисляется вдоль единичной окружности z-домена. Левая полуплоскость s-домена отображается в область внутри единичной окружности z-домена, в то время как правая полуплоскость s-домена отображается в область за пределами единичной окружности z-домена.
В обработке сигналов одним из способов проектирования цифровых фильтров является взятие аналоговых конструкций, их билинейное преобразование , которое отображает их из s-домена в z-домен, а затем создание цифрового фильтра путем проверки, манипуляции или численного приближения. Такие методы, как правило, не являются точными, за исключением случаев, когда они находятся вблизи комплексного единства, т. е. на низких частотах.
Основополагающая концепция, которая сейчас признана как Z-преобразование, являющееся краеугольным камнем в анализе и проектировании цифровых систем управления, не была полностью новой, когда она появилась в середине 20-го века. Ее зачаточные принципы можно проследить до работы французского математика Пьера-Симона Лапласа , который более известен благодаря преобразованию Лапласа , тесно связанному математическому методу. Однако явная формулировка и применение того, что мы теперь понимаем как Z-преобразование, были значительно продвинуты в 1947 году Витольдом Гуревичем и его коллегами. Их работа была мотивирована проблемами, представленными системами управления с выборочными данными, которые становились все более актуальными в контексте радиолокационной технологии в тот период. Z-преобразование предоставило систематический и эффективный метод решения линейных разностных уравнений с постоянными коэффициентами, которые повсеместно используются в анализе дискретных по времени сигналов и систем. [4] [5]
Метод был далее усовершенствован и получил официальное название «Z-преобразование» в 1952 году благодаря усилиям Джона Р. Рагаццини и Лотфи А. Заде , которые были частью группы управления выборочными данными в Колумбийском университете. Их работа не только укрепила математическую основу Z-преобразования, но и расширила сферу его применения, особенно в области электротехники и систем управления. [6] [7]
Значимое расширение, известное как модифицированное или расширенное Z-преобразование , было позже введено Элиаху И. Джури . Работа Джури расширила применимость и надежность Z-преобразования, особенно в обработке начальных условий и предоставлении более полной структуры для анализа цифровых систем управления. Эта расширенная формулировка сыграла ключевую роль в проектировании и анализе устойчивости дискретных систем управления, внеся значительный вклад в область цифровой обработки сигналов. [8] [9]
Интересно, что концептуальные основы Z-преобразования пересекаются с более широкой математической концепцией, известной как метод производящих функций , мощный инструмент в комбинаторике и теории вероятностей. На эту связь намекнул еще в 1730 году Авраам де Муавр , пионер в развитии теории вероятностей. Де Муавр использовал производящие функции для решения задач по вероятности, заложив основу для того, что в конечном итоге превратилось в Z-преобразование. С математической точки зрения Z-преобразование можно рассматривать как конкретный случай ряда Лорана , где последовательность исследуемых чисел интерпретируется как коэффициенты в (лорановском) разложении аналитической функции . Эта точка зрения не только подчеркивает глубокие математические корни Z-преобразования, но и иллюстрирует его универсальность и широкую применимость в различных областях математики и техники. [10]
Z-преобразование можно определить как одностороннее или двустороннее преобразование . (Точно так же, как у нас есть одностороннее преобразование Лапласа и двустороннее преобразование Лапласа .) [11]
Двустороннее Z -преобразование дискретного по времени сигнала представляет собой формальный степенной ряд, определяемый как:
где — целое число, а — в общем случае комплексное число . В полярной форме может быть записано как:
где — величина , — мнимая единица , — комплексный аргумент (также называемый углом или фазой ) в радианах .
В качестве альтернативы, в случаях, когда определено только для , одностороннее или одностороннее Z-преобразование определяется как:
В обработке сигналов это определение можно использовать для оценки Z-преобразования единичного импульсного отклика дискретной по времени причинной системы .
Важным примером одностороннего Z-преобразования является функция генерации вероятности , где компонентом является вероятность того, что дискретная случайная величина принимает значение. Свойства Z-преобразований (перечисленные в § Свойства) имеют полезные интерпретации в контексте теории вероятностей.
Обратное Z -преобразование:
где — замкнутый путь против часовой стрелки, охватывающий начало координат и полностью находящийся в области сходимости (ROC). В случае, когда ROC является причинным (см. Пример 2), это означает, что путь должен охватывать все полюса .
Особый случай этого контурного интеграла возникает, когда является единичной окружностью. Этот контур можно использовать, когда ROC включает единичную окружность, что всегда гарантировано, когда является устойчивым, то есть когда все полюса находятся внутри единичной окружности. С этим контуром обратное Z-преобразование упрощается до обратного дискретного преобразования Фурье или ряда Фурье периодических значений Z-преобразования вокруг единичной окружности:
Z-преобразование с конечным диапазоном и конечным числом равномерно распределенных значений может быть эффективно вычислено с помощью алгоритма БПФ Блюстейна . Дискретное преобразование Фурье (ДВПФ) — не путать с дискретным преобразованием Фурье (ДПФ) — является частным случаем такого Z-преобразования, полученного путем ограничения на единичную окружность.
Для оценки обратного преобразования часто используются следующие три метода:
Этот метод включает применение теоремы Коши о вычетах для оценки обратного Z-преобразования. Интегрируя по замкнутому контуру в комплексной плоскости, остатки на полюсах функции Z-преобразования внутри ROC суммируются. Этот метод особенно полезен при работе с функциями, выраженными в терминах комплексных переменных.
В этом методе Z-преобразование разлагается в степенной ряд. Этот подход полезен, когда функция Z-преобразования рациональна, позволяя аппроксимировать обратную функцию путем разложения в ряд и определения коэффициентов сигнала почленно.
Этот метод разлагает Z-преобразование на сумму более простых дробей, каждая из которых соответствует известным парам Z-преобразования. Обратное Z-преобразование затем определяется путем поиска каждого члена в стандартной таблице пар Z-преобразования. Этот метод широко используется из-за его эффективности и простоты, особенно когда исходную функцию можно легко разбить на узнаваемые компоненты.
A) Определите обратное Z-преобразование следующего уравнения методом разложения в ряд:
Решение:
Случай 1:
РПЦ:
Поскольку ROC является внешней частью круга, то она является причинной (сигнал существует для n≥0).
таким образом,
(стрелка указывает на член при x(0)=1)
Обратите внимание, что на каждом этапе процесса деления в столбик мы исключаем член наименьшей степени .
Случай 2:
РПЦ:
Поскольку ROC находится внутри круга, это антикаузально (сигнал существует для n<0).
Выполняя деление в столбик, мы получаем,
(стрелка указывает на член при x(0)=0)
Обратите внимание, что на каждом этапе процесса деления в столбик мы исключаем член наименьшей степени .
Примечание:
Б) Определите обратное Z-преобразование следующего уравнения методом разложения в ряд:
Исключая отрицательные степени if и делим на ,
Посредством разложения дробей,
Случай 1:
РПЦ:
Оба термина являются причинными, следовательно, является причинным.
Случай 2:
РПЦ:
Оба термина являются антикаузальными, следовательно, является антикаузальным.
Случай 3:
РПЦ:
Один из терминов является причинным (p=0,5 обеспечивает причинную часть), а другой — антипричинным (p=1 обеспечивает антипричинную часть), следовательно, является двусторонним.
Область сходимости (ROC) — это множество точек на комплексной плоскости, для которых суммирование Z-преобразования сходится (т.е. не стремится к бесконечности):
Пусть Расширяя на интервале это становится
Глядя на сумму
Следовательно, не существует значений, удовлетворяющих этому условию.
Пусть (где — ступенчатая функция Хевисайда ). Расширяя на интервале , получаем
Глядя на сумму
Последнее равенство вытекает из бесконечной геометрической прогрессии , и равенство выполняется только в том случае, если которое можно переписать в виде Таким образом, ROC имеет вид В этом случае ROC представляет собой комплексную плоскость с «выбитым» в начале координат кругом радиуса 0,5.
Пусть (где — ступенчатая функция Хевисайда ). Расширяя на интервале , получаем
Глядя на сумму
и снова используя бесконечную геометрическую прогрессию , равенство выполняется только в том случае, если которое можно переписать в виде Таким образом, ROC имеет вид В этом случае ROC представляет собой диск с центром в начале координат и радиусом 0,5.
Этот пример отличается от предыдущего только ROC. Это сделано намеренно, чтобы продемонстрировать, что одного результата преобразования недостаточно.
Примеры 2 и 3 ясно показывают, что Z-преобразование уникально тогда и только тогда, когда задан ROC. Создание графика полюс–ноль для каузального и антикаузального случая показывает, что ROC для любого случая не включает полюс, который находится на 0,5. Это распространяется на случаи с несколькими полюсами: ROC никогда не будет содержать полюсов.
В примере 2 каузальная система дает ROC, которая включает в себя, в то время как антикаузальная система в примере 3 дает ROC, которая включает в себя
В системах с несколькими полюсами возможно наличие ROC, который не включает ни ROC создает круговую полосу. Например,
имеет полюса в 0,5 и 0,75. ROC будет 0,5 < | z | < 0,75, что не включает ни начало, ни бесконечность. Такая система называется системой смешанной причинности, поскольку она содержит причинный член и антипричинный член
Устойчивость системы также можно определить, зная только ROC. Если ROC содержит единичную окружность (т.е. | z | = 1), то система устойчива. В приведенных выше системах причинная система (пример 2) устойчива, поскольку | z | > 0,5 содержит единичную окружность.
Предположим, что нам предоставлено Z-преобразование системы без ROC (т.е. неоднозначное ). Мы можем определить уникальное при условии, что мы желаем следующего:
Для устойчивости ROC должна содержать единичную окружность. Если нам нужна каузальная система, то ROC должна содержать бесконечность, а системная функция будет правосторонней последовательностью. Если нам нужна антикаузальная система, то ROC должна содержать начало координат, а системная функция будет левосторонней последовательностью. Если нам нужны и устойчивость, и причинность, все полюса системной функции должны находиться внутри единичной окружности.
Тогда можно найти уникальное .
Теорема о начальном значении : Еслиявляется причинно-следственной, то
Теорема об окончательном значении : Если полюсанаходятся внутри единичной окружности, то
Здесь:
является единичной (или Хевисайдовой) ступенчатой функцией и
является дискретной по времени единичной импульсной функцией (ср. дельта-функцию Дирака , которая является версией с непрерывным временем). Две функции выбираются вместе так, чтобы единичная ступенчатая функция была накоплением (текущим итогом) единичной импульсной функции.
Для значений в области , известной как единичная окружность , мы можем выразить преобразование как функцию одной действительной переменной , определив И двустороннее преобразование сводится к ряду Фурье :
которое также известно как дискретное преобразование Фурье (DTFT) последовательности . Эта -периодическая функция является периодическим суммированием преобразования Фурье , что делает ее широко используемым инструментом анализа. Чтобы понять это, пусть будет преобразованием Фурье любой функции, , выборки которой на некотором интервале равны последовательности. Тогда DTFT последовательности можно записать следующим образом.
где имеет единицы секунды, имеет единицы герц . Сравнение двух рядов показывает, что является нормализованной частотой с единицей радиан на выборку . Значение соответствует . И теперь, с заменой Уравнение 1 можно выразить через (преобразование Фурье):
При изменении параметра T отдельные члены уравнения 2 смещаются дальше друг от друга или ближе друг к другу вдоль оси f . Однако в уравнении 3 центры остаются на расстоянии 2 π друг от друга, в то время как их ширина расширяется или сжимается. Когда последовательность представляет собой импульсную характеристику системы LTI , эти функции также известны как ее частотная характеристика . Когда последовательность периодична, ее DTFT расходится на одной или нескольких гармонических частотах и равна нулю на всех других частотах. Это часто представляется с помощью использования амплитудно-вариантных дельта -функций Дирака на гармонических частотах. Из-за периодичности существует только конечное число уникальных амплитуд, которые легко вычисляются с помощью гораздо более простого дискретного преобразования Фурье (DFT). (См. Дискретное преобразование Фурье § Периодические данные .)
Билинейная трансформация может быть использована для преобразования непрерывных по времени фильтров (представленных в области Лапласа) в дискретные по времени фильтры (представленные в области Z) и наоборот. Используется следующая подстановка:
преобразовать некоторую функцию в области Лапласа в функцию в Z-области ( преобразование Тастина ), или
из Z-области в область Лапласа. С помощью билинейного преобразования комплексная s- плоскость (преобразования Лапласа) отображается в комплексную z-плоскость (z-преобразования). Хотя это отображение (обязательно) нелинейно, оно полезно тем, что отображает всю ось s -плоскости на единичную окружность в z-плоскости. Таким образом, преобразование Фурье (которое является преобразованием Лапласа, вычисленным на оси) становится дискретным по времени преобразованием Фурье. Это предполагает, что преобразование Фурье существует; т. е. что ось находится в области сходимости преобразования Лапласа.
При наличии одностороннего Z-преобразования функции с временной выборкой соответствующее звездчатое преобразование создает преобразование Лапласа и восстанавливает зависимость от (параметра выборки):
Обратное преобразование Лапласа — это математическая абстракция, известная как функция импульсной выборки .
Линейное уравнение разности постоянных коэффициентов (LCCD) представляет собой представление линейной системы, основанной на уравнении авторегрессии скользящего среднего :
Обе стороны уравнения выше можно разделить на если оно не равно нулю. Нормализуя с помощью LCCD уравнение можно записать
Эта форма уравнения LCCD благоприятна для того, чтобы сделать более явным тот факт, что «текущий» выход является функцией прошлых выходов, текущего входа и предыдущих входов.
Применяя Z-преобразование к приведенному выше уравнению (используя законы линейности и сдвига во времени), получаем:
где и являются z-преобразованием и соответственно. (В соглашениях об обозначениях обычно используются заглавные буквы для обозначения z-преобразования сигнала, обозначенного соответствующей строчной буквой, аналогично соглашению, используемому для обозначения преобразований Лапласа.)
Перестановка результатов в передаточной функции системы :
Из основной теоремы алгебры числитель имеет корни (соответствующие нулям ), а знаменатель имеет корни (соответствующие полюсам). Переписываем передаточную функцию в терминах нулей и полюсов
где — ноль, а — полюс. Нули и полюса обычно являются комплексными, и при построении на комплексной плоскости (z-плоскости) это называется графиком полюс–ноль .
Кроме того, могут существовать также нули и полюса в и Если принять во внимание эти полюса и нули, а также нули и полюса нескольких порядков, то количество нулей и полюсов всегда одинаково.
Факторизуя знаменатель, можно использовать разложение дроби , которое затем можно преобразовать обратно во временную область. Это приведет к импульсному отклику и линейному уравнению разности постоянных коэффициентов системы.
Если такая система управляется сигналом , то выход будет Выполняя частичное дробное разложение на и затем выполняя обратное Z-преобразование, выход может быть найден. На практике часто бывает полезно дробно разложить перед умножением этой величины на для генерации формы , которая имеет члены с легко вычисляемыми обратными Z-преобразованиями.
Z — комплексная переменная. Z-преобразование преобразует дискретный сигнал пространственной области в комплексное представление частотной области. Z-преобразование выводится из преобразования Лапласа.
Преобразование Лапласа и z -преобразование тесно связаны с преобразованием Фурье. z -преобразование особенно подходит для работы с дискретными сигналами и системами. Оно предлагает более компактную и удобную запись, чем дискретное преобразование Фурье.
z -преобразование является дискретным аналогом преобразования Лапласа. z -преобразование преобразует разностные уравнения дискретных временных систем в алгебраические уравнения, что упрощает анализ дискретных временных систем. Преобразование Лапласа и z -преобразование являются общими, за исключением того, что преобразование Лапласа имеет дело с непрерывными во времени сигналами и системами.
z-преобразование для систем с дискретным временем является тем же, чем преобразование Лапласа для систем с непрерывным временем. z — комплексная переменная. Иногда это называют двусторонним z- преобразованием, при этом одностороннее z-преобразование является тем же самым, за исключением суммирования от n = 0 до бесконечности. Основное применение одностороннего преобразования ... — для причинно-следственных последовательностей, в этом случае два преобразования в любом случае одинаковы. Поэтому мы не будем делать этого различия и будем называть ... просто z-преобразованием x ( n ).