stringtranslate.com

Immune checkpoint

Immune checkpoints in the tumour microenvironment
Immune checkpoints of immunosuppressive actions associated with breast cancer

Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. However, some cancers can protect themselves from attack by stimulating immune checkpoint targets.[1]

Inhibitory checkpoint molecules are targets for cancer immunotherapy due to their potential for use in multiple types of cancers. Currently approved checkpoint inhibitors block CTLA4, PD-1 and PD-L1. For the related basic science discoveries, James P. Allison and Tasuku Honjo won the Tang Prize in Biopharmaceutical Science and the Nobel Prize in Physiology or Medicine in 2018.[2][3]

Stimulatory checkpoint molecules

Four stimulatory checkpoint molecules are members of the tumor necrosis factor (TNF) receptor superfamily—CD27, CD40, OX40, GITR and CD137. Another two stimulatory checkpoint molecules belong to the B7-CD28 superfamily—CD28 itself and ICOS.

Inhibitory checkpoint molecules

Cancer Therapy by Inhibition of Negative Immune Regulation (CTLA4, PD1)

Immune checkpoint inhibitors

Drugs or drug candidates that inhibit/block the inhibitory checkpoint molecules are sometimes known as checkpoint inhibitors; this idea is often referred to as immune checkpoint blockade, or simply checkpoint blockade.[52][38] Checkpoint inhibitor drugs have seen growth in pharmaceutical research in cancer by companies including Bristol-Myers Squibb, Merck, Merck KGaA, Roche and AstraZeneca.[53]

References

  1. ^ Pardoll DM (March 2012). "The blockade of immune checkpoints in cancer immunotherapy". Nature Reviews. Cancer. 12 (4): 252–264. doi:10.1038/nrc3239. PMC 4856023. PMID 22437870.
  2. ^ "2014 Tang Prize in Biopharmaceutical Science". Archived from the original on 2017-10-20. Retrieved 2016-06-18.
  3. ^ Devlin H (2018-10-01). "James P Allison and Tasuku Honjo win Nobel prize for medicine". the Guardian. Retrieved 2018-10-01.
  4. ^ Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J (November 2000). "CD27 is required for generation and long-term maintenance of T cell immunity". Nature Immunology. 1 (5): 433–440. doi:10.1038/80877. PMID 11062504. S2CID 36108378.
  5. ^ Agematsu K (April 2000). "Memory B cells and CD27". Histology and Histopathology. 15 (2): 573–576. doi:10.14670/HH-15.573. PMID 10809378.
  6. ^ Borst J, Hendriks J, Xiao Y (June 2005). "CD27 and CD70 in T cell and B cell activation". Current Opinion in Immunology. 17 (3): 275–281. doi:10.1016/j.coi.2005.04.004. PMID 15886117.
  7. ^ Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EA, Xiao Y, et al. (January 2013). "The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity". Immunity. 38 (1): 53–65. doi:10.1016/j.immuni.2012.09.009. PMID 23159439.
  8. ^ "CDX-1127 – Monoclonal Antibody Targeting CD27". Celldex Therapeutics. Archived from the original on 2018-10-03. Retrieved 2015-06-04.
  9. ^ He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, et al. (October 2013). "Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice". Journal of Immunology. 191 (8): 4174–4183. doi:10.4049/jimmunol.1300409. PMID 24026078.
  10. ^ Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M, et al. (October 2010). "Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells". British Journal of Pharmacology. 161 (3): 512–526. doi:10.1111/j.1476-5381.2010.00922.x. PMC 2990151. PMID 20880392.
  11. ^ O'Sullivan B, Thomas R (January 1, 2003). "CD40 and dendritic cell function". Critical Reviews in Immunology. 23 (1–2): 83–107. doi:10.1615/critrevimmunol.v23.i12.50. PMID 12906261.
  12. ^ Zimm A (April 12, 2014). "Cancer 'Miracle' Patients Studied Anew for Disease Clues". Bloomberg. Retrieved 25 June 2015.
  13. ^ Boyman O, Sprent J (February 2012). "The role of interleukin-2 during homeostasis and activation of the immune system". Nature Reviews. Immunology. 12 (3): 180–190. doi:10.1038/nri3156. PMID 22343569. S2CID 22680847.
  14. ^ "Nektar and MD Anderson Cancer Center Announce Phase 1/2 Clinical Research Collaboration for NKTR-214, a CD122-Biased Immuno-Stimulatory Cytokine". Nektar Therapeutics. June 2, 2015. Archived from the original on 19 December 2017. Retrieved 25 June 2015.
  15. ^ Immunotherapy, NKTR-214, Shows Activity Against Solid Tumors in Clinical Trial
  16. ^ Singh R, Kim YH, Lee SJ, Eom HS, Choi BK (Feb 2024). "4-1BB immunotherapy: advances and hurdles". Experimental & Molecular Medicine volume. 56 (1): 32–39. doi:10.1038/s12276-023-01136-4. PMC 10834507. PMID 38172595.
  17. ^ "Pieris Pharmaceuticals to present data on novel anti-CD137 and HER2 bispecific immuno-oncology program at UBS Global Healthcare Conference". Pieris Pharmaceuticals. 19 May 2015. Archived from the original on 3 October 2018. Retrieved 5 June 2015.
  18. ^ Croft M, So T, Duan W, Soroosh P (May 2009). "The significance of OX40 and OX40L to T-cell biology and immune disease". Immunological Reviews. 229 (1): 173–191. doi:10.1111/j.1600-065x.2009.00766.x. PMC 2729757. PMID 19426222.
  19. ^ Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD (November 2011). "Science gone translational: the OX40 agonist story". Immunological Reviews. 244 (1): 218–231. doi:10.1111/j.1600-065x.2011.01069.x. PMC 3622727. PMID 22017441.
  20. ^ Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. (December 2013). "OX40 is a potent immune-stimulating target in late-stage cancer patients". Cancer Research. 73 (24): 7189–7198. doi:10.1158/0008-5472.can-12-4174. PMC 3922072. PMID 24177180.
  21. ^ "Q1 2015 Result". AstraZeneca. 24 April 2015. Retrieved 5 June 2015.
  22. ^ Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G, et al. (March 2004). "GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations". European Journal of Immunology. 34 (3): 613–622. doi:10.1002/eji.200324804. PMID 14991590.
  23. ^ Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C (May 2007). "GITR/GITRL: more than an effector T cell co-stimulatory system". European Journal of Immunology. 37 (5): 1165–1169. doi:10.1002/eji.200636933. PMID 17407102.
  24. ^ Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, et al. (November 2013). "GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability". Cancer Immunology Research. 1 (5): 320–331. doi:10.1158/2326-6066.cir-13-0086. PMC 3885345. PMID 24416730.
  25. ^ "TG Therapeutics Enters Into a Global Collaboration With Checkpoint Therapeutics to Develop and Commercialize Novel Immuno-Oncology Targeted Antibodies". TG Therapeutics. 4 March 2015. Retrieved 5 June 2015.
  26. ^ Burmeister Y, Lischke T, Dahler AC, Mages HW, Lam KP, Coyle AJ, et al. (January 2008). "ICOS controls the pool size of effector-memory and regulatory T cells". Journal of Immunology. 180 (2): 774–782. doi:10.4049/jimmunol.180.2.774. PMID 18178815.
  27. ^ Leone RD, Lo YC, Powell JD (April 8, 2015). "A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy". Computational and Structural Biotechnology Journal. 13: 265–272. doi:10.1016/j.csbj.2015.03.008. PMC 4415113. PMID 25941561.
  28. ^ Tay AH, Prieto-Díaz R, Neo S, Tong L, Chen X, Carannante V, et al. (May 2022). "A2B adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models". Journal for Immunotherapy of Cancer. 10 (5): e004592. doi:10.1136/jitc-2022-004592. PMC 9115112. PMID 35580926. S2CID 248858436.
  29. ^ Prieto-Díaz, Rubén; González-Gómez, Manuel; Fojo-Carballo, Hugo; Azuaje, Jhonny; El Maatougui, Abdelaziz; Majellaro, Maria; Loza, María I.; Brea, José; Fernández-Dueñas, Víctor; Paleo, M. Rita; Díaz-Holguín, Alejandro; Garcia-Pinel, Beatriz; Mallo-Abreu, Ana; Estévez, Juan C.; Andújar-Arias, Antonio (2022-12-14). "Exploring the Effect of Halogenation in a Series of Potent and Selective A 2B Adenosine Receptor Antagonists". Journal of Medicinal Chemistry. 66 (1): 890–912. doi:10.1021/acs.jmedchem.2c01768. ISSN 0022-2623. PMC 9841532. PMID 36517209. S2CID 254759241.
  30. ^ Hinz S, Navarro G, Borroto-Escuela D, Seibt BF, Ammon YC, de Filippo E, et al. (March 2018). "Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors". Oncotarget. 9 (17): 13593–13611. doi:10.18632/oncotarget.24423. PMC 5862601. PMID 29568380.
  31. ^ Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, et al. (March 2001). "B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production". Nature Immunology. 2 (3): 269–274. doi:10.1038/85339. PMID 11224528. S2CID 43480199.
  32. ^ Leitner J, Klauser C, Pickl WF, Stöckl J, Majdic O, Bardet AF, et al. (July 2009). "B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction". European Journal of Immunology. 39 (7): 1754–1764. doi:10.1002/eji.200839028. PMC 2978551. PMID 19544488.
  33. ^ "MacroGenics Provides Update on Corporate Progress and First Quarter 2015 Financial Results". MacroGenics. 6 May 2015. Retrieved 5 June 2015.
  34. ^ Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M, et al. (February 2015). "B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer". Oncotarget. 6 (5): 3452–3461. doi:10.18632/oncotarget.3097. PMC 4413666. PMID 25609202.
  35. ^ Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandaltzopoulos R, et al. (August 2013). "Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses". Cancer Research. 73 (15): 4820–4829. doi:10.1158/0008-5472.can-12-3457. PMC 3732560. PMID 23722540.
  36. ^ Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, et al. (January 2010). "BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination". The Journal of Clinical Investigation. 120 (1): 157–167. doi:10.1172/jci40070. PMC 2799219. PMID 20038811. Open access icon
  37. ^ Kolar P, Knieke K, Hegel JK, Quandt D, Burmester GR, Hoff H, Brunner-Weinzierl MC (January 2009). "CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice". Arthritis and Rheumatism. 60 (1): 123–132. doi:10.1002/art.24181. PMID 19116935.
  38. ^ a b c d e f g h Syn NL, Teng MW, Mok TS, Soo RA (December 2017). "De-novo and acquired resistance to immune checkpoint targeting". The Lancet. Oncology. 18 (12): e731–e741. doi:10.1016/s1470-2045(17)30607-1. PMID 29208439.
  39. ^ Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (July 2014). "Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer". Cancer Immunology, Immunotherapy. 63 (7): 721–735. doi:10.1007/s00262-014-1549-4. PMC 4384696. PMID 24711084.
  40. ^ Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. (October 2004). "Role of LAG-3 in regulatory T cells". Immunity. 21 (4): 503–513. doi:10.1016/j.immuni.2004.08.010. PMID 15485628.
  41. ^ Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, et al. (November 2007). "LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems". The Journal of Clinical Investigation. 117 (11): 3383–3392. doi:10.1172/jci31184. PMC 2000807. PMID 17932562.
  42. ^ Clinical trial number NCT01968109 for "Safety Study of Anti-LAG-3 With and Without Anti-PD-1 in the Treatment of Solid Tumors" at ClinicalTrials.gov
  43. ^ Martner A, Aydin E, Hellstrand K (February 2019). "NOX2 in autoimmunity, tumor growth and metastasis". The Journal of Pathology. 247 (2): 151–154. doi:10.1002/path.5175. PMC 6587556. PMID 30270440.
  44. ^ Philips GK, Atkins M (January 2015). "Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies". International Immunology. 27 (1): 39–46. doi:10.1093/intimm/dxu095. PMID 25323844.
  45. ^ Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, Kent SC, et al. (September 2009). "TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines". European Journal of Immunology. 39 (9): 2492–2501. doi:10.1002/eji.200939274. PMC 2759376. PMID 19676072.
  46. ^ Zhu C, Anderson AC, Kuchroo VK (August 11, 2010). "TIM-3 and its regulatory role in immune responses". Current Topics in Microbiology and Immunology. 350: 1–15. doi:10.1007/82_2010_84. ISBN 978-3-642-19544-0. PMID 20700701.
  47. ^ Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, et al. (March 2011). "VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses". The Journal of Experimental Medicine. 208 (3): 577–592. doi:10.1084/jem.20100619. PMC 3058578. PMID 21383057.
  48. ^ Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S, et al. (April 2014). "VISTA is an immune checkpoint molecule for human T cells". Cancer Research. 74 (7): 1924–1932. doi:10.1158/0008-5472.CAN-13-1504. PMC 3979527. PMID 24691993.
  49. ^ Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von Gunten S, et al. (November 2018). "Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells". The Journal of Clinical Investigation. 128 (11): 4912–4923. doi:10.1172/JCI120612. PMC 6205408. PMID 30130255.
  50. ^ Crocker PR, Paulson JC, Varki A (April 2007). "Siglecs and their roles in the immune system". Nature Reviews. Immunology. 7 (4): 255–266. doi:10.1038/nri2056. PMID 17380156. S2CID 26722878.
  51. ^ Macauley MS, Crocker PR, Paulson JC (October 2014). "Siglec-mediated regulation of immune cell function in disease". Nature Reviews. Immunology. 14 (10): 653–666. doi:10.1038/nri3737. PMC 4191907. PMID 25234143.
  52. ^ Pardoll DM (March 2012). "The blockade of immune checkpoints in cancer immunotherapy". Nature Reviews. Cancer. 12 (4): 252–264. doi:10.1038/nrc3239. PMC 4856023. PMID 22437870.
  53. ^ "Cancer drugs are getting better and dearer". The Economist. 2017-05-04. Retrieved 2017-05-19.