stringtranslate.com

Многоадресность

Множественная адресация — это практика подключения хоста или компьютерной сети к более чем одной сети. Это можно сделать для повышения надежности или производительности.

Типичная сеть хоста или конечного пользователя подключена только к одной сети. Подключение к нескольким сетям может повысить надежность, поскольку в случае сбоя одного соединения пакеты все равно могут маршрутизироваться через оставшееся соединение. Подключение к нескольким сетям также может повысить производительность, поскольку данные могут передаваться и приниматься через несколько соединений, одновременно увеличивая пропускную способность , и, в зависимости от пункта назначения, маршрутизация через одну или другую сеть может оказаться более эффективной.

Варианты

Существует несколько различных способов выполнения множественной адресации.

Многоадресность хоста

Один хост может быть подключен к нескольким сетям. Например, мобильный телефон может быть одновременно подключен к сети Wi-Fi и сети 3G , а настольный компьютер может быть подключен как к домашней сети, так и к VPN . Многосетевому узлу обычно назначается несколько адресов, по одному на каждую подключенную сеть.

Классическая множественная адресация

При классической множественной адресации [1] [2] сеть подключена к нескольким провайдерам и использует собственный диапазон адресов (обычно из диапазона , независимого от провайдера (PI)). Граничные маршрутизаторы сети взаимодействуют с провайдерами, используя протокол динамической маршрутизации , обычно BGP , который объявляет диапазон адресов сети всем провайдерам. Если один из каналов выходит из строя, протокол динамической маршрутизации распознает сбой в течение нескольких секунд или минут и перенастраивает свои таблицы маршрутизации для использования остальных каналов, прозрачно для хостов.

Классическая множественная адресация является дорогостоящей, поскольку требует использования адресного пространства, принимаемого всеми провайдерами, общедоступного номера автономной системы (AS) и протокола динамической маршрутизации. Поскольку многосетевое адресное пространство не может быть агрегировано, это приводит к росту глобальной таблицы маршрутизации. [3]

Многоадресность с несколькими адресами

При таком подходе сеть подключается к нескольким провайдерам и ей назначается несколько диапазонов адресов, по одному для каждого провайдера. Хостам назначается несколько адресов, по одному для каждого провайдера. [4]

Многоадресность с несколькими адресами дешевле, чем классическая множественная адресация, и может использоваться без какого-либо сотрудничества со стороны провайдеров (например, в домашней сети), но требует дополнительных технологий для выполнения маршрутизации: [5]

Предостережения

Когда для повышения надежности используется множественная адресация, необходимо позаботиться о том, чтобы исключить любую единственную точку отказа (SPOF):

Увеличивая количество используемых интерфейсов и каналов и делая маршрутизацию менее детерминированной, множественная адресация усложняет администрирование сети .

IPv4

Классическая множественная адресация является доминирующим методом для IPv4. Для этого необходимо, чтобы сеть имела собственный диапазон общедоступных IP-адресов и общедоступный номер AS.

Хотя для IPv4 реализована множественная адресация с несколькими адресами, [6] она обычно не используется, поскольку реализации хоста плохо справляются с несколькими адресами на интерфейс, что требует использования «виртуальных интерфейсов». [7] Также возможно реализовать множественную адресацию для IPv4 с использованием нескольких шлюзов NAT . [8]

IPv6

В IPv6 можно использовать как классическую множественную адресацию, так и множественную адресацию с несколькими адресами.

Классическая множественная адресация

Независимое от поставщика адресное пространство (PI) доступно в IPv6. [9] Преимущество этого метода заключается в том, что он работает как IPv4, поддерживает балансировку трафика между несколькими провайдерами и поддерживает существующие сеансы TCP и UDP посредством переключений. Критики говорят, что увеличенный размер таблиц маршрутизации, необходимый для такой обработки множественной адресации, приведет к перегрузке существующего оборудования маршрутизаторов. Сторонники говорят, что новое оборудование сможет справиться с увеличением благодаря удешевлению памяти, цена которой падает в соответствии с законом Мура . Сторонники также говорят, что это единственное жизнеспособное решение на данный момент, и философия «чем хуже, тем лучше» поддерживает идею о том, что лучше использовать несовершенное решение сейчас, чем идеальное решение, когда станет слишком поздно.

Поскольку многие интернет-провайдеры отфильтровывают объявления маршрутов с небольшими префиксами, для обеспечения глобальной доступности обычно требуется выделение большого IP-адреса размером с интернет-провайдера, например /32. Использование таких больших префиксов является неэффективным использованием адресного пространства IPv6; существует всего около 4 миллиардов /32 префиксов. Однако с прагматической точки зрения выделение /32 по стоимости глобального адресного пространства эквивалентно выделению одного адреса IPv4, и это может быть приемлемо, если, что вполне вероятно в обозримом будущем, количество многодомных сайтов можно будет пронумеровать. только в миллионах, в отличие от многих миллиардов односетевых конечных точек, которые, как ожидается, будут составлять подавляющее большинство конечных точек IPv6. [ нужна цитация ] Некоторые региональные интернет-реестры (RIR), такие как RIPE, начали выделять /48 из определенного префикса для этой цели. RIPE выделяет независимое от провайдера адресное пространство IPv6 /48 или короче, начиная с 2001:0678::/29.

Многоадресность с несколькими адресами

Для IPv6 реализована множественная адресация с несколькими адресами. [6] [10] Для исходящего трафика требуется поддержка на хосте, либо независимая от протокола ( Multipath TCP , SCTP , QUIC и т. д.), либо специфичная для IPv6 (например, SHIM6 ).

Другие решения

Смотрите также

Рекомендации

  1. ^ Ильич ван Бейнум, Взгляд на множественную адресацию и BGP
  2. ^ Пример конфигурации для BGP с двумя разными поставщиками услуг (мультихоминг)
  3. ^ «Отчеты BGP». Bgp.potaroo.net . Проверено 17 августа 2022 г.
  4. ^ Масштабируемая поддержка многодомового подключения к нескольким провайдерам. дои : 10.17487/RFC2260 . РФК 2260.
  5. ^ Постановка задачи для выбора адреса по умолчанию в средах с несколькими префиксами: эксплуатационные проблемы правил по умолчанию RFC 3484. дои : 10.17487/RFC5220 . РФК 5220.
  6. ^ abc Матье Бутье; Юлиуш Хробочек (2015), «Маршрутизация с учетом источника», Proc. Сеть ИФИП 2015 , arXiv : 1403.0445 , Bibcode : 2014arXiv1403.0445B
  7. ^ Зима, Рольф; Фаат, Майкл; Рипке, Анис (21 марта 2016 г.). «Поддержка многопутевого TCP для односетевых конечных систем». IETF .
  8. ^ Векторная маршрутизация (PDF)
  9. ^ «Независимые от поставщика (PI) назначения IPv6 для организаций конечных пользователей» .
  10. ^ Лампартер, Дэвид; Смирнов Антон. «Маршрутизация назначения/источника». IETF .
  11. ^ Аткинсон, Рэндалл; Карпентер, Брайан Э.; Флинк, Ханну (май 2010 г.). Изменение нумерации все еще требует работы. дои : 10.17487/RFC5887 . РФК 5887.

дальнейшее чтение