stringtranslate.com

Теория HSAB

HSAB — это аббревиатура от «твердых и мягких (Льюиса) кислот и оснований ». HSAB широко используется в химии для объяснения стабильности соединений , механизмов и путей реакций. Он присваивает химическим веществам термины «твердый» или «мягкий», а также «кислота» или «основание» . «Жесткий» относится к видам, которые малы по размеру, имеют высокие зарядовые состояния (критерий заряда применим в основном к кислотам, в меньшей степени к основаниям) и слабо поляризуемы . «Мягкий» относится к крупным видам, имеющим низкий заряд и сильно поляризуемым. [1]

Теория используется в контекстах, где качественное, а не количественное описание поможет понять преобладающие факторы, определяющие химические свойства и реакции. Это особенно актуально в химии переходных металлов , где были проведены многочисленные эксперименты для определения относительного порядка лигандов и ионов переходных металлов с точки зрения их твердости и мягкости.

Теория HSAB также полезна для предсказания продуктов реакций метатезиса . В 2005 году было показано, что даже чувствительность и характеристики взрывчатых материалов можно объяснить на основе теории HSAB. [2]

Ральф Пирсон представил принцип HSAB в начале 1960-х годов [3] [4] [5] как попытку объединить неорганическую и органическую реакционную химию. [6]

Теория

Тенденции «жесткой» и «мягкой» кислот и оснований

По сути, теория утверждает, что мягкие кислоты предпочитают образовывать связи с мягкими основаниями, тогда как жесткие кислоты предпочитают образовывать связи с твердыми основаниями, при прочих равных условиях. [7] Можно также сказать, что жесткие кислоты прочно связываются с твердыми основаниями, а мягкие кислоты прочно связываются с мягкими основаниями. Классификация HASB в оригинальной работе во многом основывалась на константах равновесия кислотно-основных реакций Льюиса с эталонным основанием для сравнения. [8]

Выявлены также пограничные случаи: пограничными кислотами являются триметилборан , диоксид серы и железа Fe 2+ , кобальт Со 2+ цезий Cs + и катионы свинца Pb 2+ . Пограничными основаниями являются: анилин , пиридин , азот N 2 и азидные , хлоридные , бромидные , нитратные и сульфатные анионы.

Вообще говоря, кислоты и основания взаимодействуют, причем наиболее устойчивыми являются взаимодействия твердое-твердое ( ионогенный характер) и мягкое-мягкое ( ковалентный характер).

Попытка количественно оценить «мягкость» основания состоит в определении константы равновесия для следующего равновесия:

BH + CH 3 Hg + ⇌ H + + CH 3 HgB

Где CH 3 Hg + ( ион метилртути ) — очень мягкая кислота, а H + (протон) — жесткая кислота, которые конкурируют за B (классифицируемое основание).

Несколько примеров, иллюстрирующих эффективность теории:

Химическая твердость

В 1983 году Пирсон вместе с Робертом Парром расширили качественную теорию HSAB, дав количественное определение химической твердости ( η ), пропорциональной второй производной полной энергии химической системы относительно изменения числа электронов при фиксированной температуре. ядерная среда: [11]

.

Коэффициент половины является произвольным и, как заметил Пирсон, часто опускается. [12]

Оперативное определение химической твердости получается путем применения трехточечной конечно-разностной аппроксимации ко второй производной: [13]

где I - потенциал ионизации , а A - сродство к электрону . Это выражение подразумевает, что химическая твердость пропорциональна запрещенной зоне химической системы, если она существует.

Первая производная энергии по числу электронов равна химическому потенциалу , , системы,

,

из которого рабочее определение химического потенциала получается из конечно-разностной аппроксимации производной первого порядка как

что равно отрицательному значению электроотрицательности ( χ ) по шкале Малликена : µ = − χ .

Твердость и электроотрицательность Малликена связаны соотношением

,

и в этом смысле твердость является мерой устойчивости к деформации или изменению. Аналогично, нулевое значение обозначает максимальную мягкость , где мягкость определяется как величина, обратная твердости.

В совокупности значений твердости отклоняются только значения гидрид- аниона . Еще одним несоответствием, отмеченным в оригинальной статье 1983 года, является кажущаяся более высокая твердость Tl 3+ по сравнению с Tl + .

Модификации

Если в результате взаимодействия кислоты и основания в растворе образуется равновесная смесь, силу взаимодействия можно определить количественно через константу равновесия . Альтернативной количественной мерой является теплота ( энтальпия ) образования кислотно-основного аддукта Льюиса в некоординационном растворителе. Модель ECW представляет собой количественную модель, которая описывает и прогнозирует силу кислотно-основных взаимодействий Льюиса, -ΔH. Модель присвоила параметры E и C многим кислотам и основаниям Льюиса. Каждая кислота характеризуется E A и CA. Каждое основание также характеризуется своими собственными E B и C B . Параметры E и C относятся соответственно к электростатическому и ковалентному вкладу в прочность связей, которые образуют кислота и основание. Уравнение

-ΔH = E A E B + C A C B + W

Термин W представляет собой постоянный вклад энергии в кислотно-основную реакцию, такую ​​как расщепление димерной кислоты или основания. Уравнение предсказывает изменение силы кислот и оснований. Графическое представление уравнения показывает, что не существует единого порядка силы оснований Льюиса или силы кислоты Льюиса. [14] Модель ECW учитывает невозможность описания однопараметрических кислотно-основных взаимодействий.

Связанный метод, использующий формализм E и C Драго и его коллег, количественно предсказывает константы образования комплексов многих ионов металлов плюс протон с широким спектром однодентатных кислот Льюиса в водном растворе, а также дает представление о факторах, определяющих поведение HSAB. в растворе. [15]

Была предложена другая количественная система, в которой сила кислоты Льюиса по отношению к фториду основания Льюиса основана на сродстве к фториду в газовой фазе . [16] Были представлены дополнительные однопараметрические шкалы базовой прочности. [17] Однако было показано, что для определения порядка силы основания Льюиса (или силы кислоты Льюиса) необходимо учитывать как минимум два свойства. [18] Для качественной теории HSAB Пирсона двумя свойствами являются твердость и прочность, тогда как для количественной модели ECW Драго двумя свойствами являются электростатические и ковалентные.

Правило Корнблюма

Применением теории HSAB является так называемое правило Корнблюма (в честь Натана Корнблюма ) , которое гласит, что в реакциях с амбидентными нуклеофилами (нуклеофилами, которые могут атаковать из двух или более мест), более электроотрицательный атом реагирует, когда механизм реакции S N 1. и менее электроотрицательный в реакции S N 2 . Это правило (установленное в 1954 г.) [19] появилось раньше теории HSAB, но в терминах HSAB его объяснение состоит в том, что в реакции S N 1 карбокатион (жесткая кислота) реагирует с жестким основанием (высокая электроотрицательность), а в реакции S N 2 реакция четырехвалентного углерода (мягкой кислоты) реагирует с мягкими основаниями.

Согласно полученным данным, электрофильное алкилирование по свободному CN- происходит преимущественно по углероду, независимо от того, задействован механизм SN 1 или SN 2 и используются ли жесткие или мягкие электрофилы. Предпочтительная атака N, постулированная для жестких электрофилов по принципу HSAB, не может наблюдаться ни с одним алкилирующим агентом. Изоциановые соединения образуются только с помощью высокореактивных электрофилов, которые реагируют без активационного барьера, поскольку достигается предел диффузии. Утверждается, что для прогнозирования исхода алкилирования цианид-иона необходимо знание абсолютных констант скорости, а не твердости партнеров реакции. [20]

Критика

Повторный анализ большого количества различных наиболее типичных органических органических систем показывает, что термодинамический / кинетический контроль идеально описывает реакционную способность органических соединений, тогда как принцип HSAB не работает и от него следует отказаться при рационализации внешней реакционной способности органических соединений. [21]

Смотрите также

Рекомендации

  1. ^ Джолли, WL (1984). Современная неорганическая химия . Нью-Йорк: МакГроу-Хилл. ISBN 978-0-07-032760-3.
  2. ^ [1] Э.-К. Кох, Кислотно-основные взаимодействия в энергетических материалах: I. Принципы твердых и мягких кислот и оснований (HSAB) - понимание реакционной способности и чувствительности энергетических материалов, Prop., Expl., Pyrotech. 30 2005 г. , 5
  3. ^ Пирсон, Ральф Г. (1963). «Твердые и мягкие кислоты и основания». Варенье. хим. Соц. 85 (22): 3533–3539. дои : 10.1021/ja00905a001.
  4. ^ Пирсон, Ральф Г. (1968). «Жесткие и мягкие кислоты и основания, HSAB, часть 1: Фундаментальные принципы». Дж. Хим. Образование. 1968 (45): 581–586. Бибкод : 1968JChEd..45..581P. дои : 10.1021/ed045p581.
  5. ^ Пирсон, Ральф Г. (1968). «Жесткие и мягкие кислоты и основания, HSAB, часть II: Основные теории». Дж. Хим. Образование. 1968 (45): 643–648. Бибкод : 1968JChEd..45..643P. дои : 10.1021/ed045p643.
  6. ^ [2] Р.Г. Пирсон, Химическая твердость – применение от молекул к твердым веществам, Wiley-VCH, Вайнхайм, 1997, 198 стр.
  7. ^ Мюллер, П. (1 января 1994 г.). «Словарь терминов, используемых в физической органической химии (Рекомендации ИЮПАК, 1994 г.)». Чистая и прикладная химия . 66 (5): 1077–1184. дои : 10.1351/pac199466051077 . ISSN  1365-3075.
  8. ^ Пирсон, Ральф Г. (1963). «Твердые и мягкие кислоты и основания». Журнал Американского химического общества . 85 (22): 3533–3539. дои : 10.1021/ja00905a001. ISSN  0002-7863.
  9. ^ ab IUPAC , Словарь терминов, используемых в теоретической органической химии, по состоянию на 16 декабря 2006 г.
  10. ^ аб Мисслер Г.Л. и Тарр Д.А. «Неорганическая химия» 2-е изд. Прентис-Холл 1999, стр.181-5.
  11. ^ ab Роберт Г. Парр и Ральф Г. Пирсон (1983). «Абсолютная твердость: сопутствующий параметр абсолютной электроотрицательности». Варенье. хим. Соц. 105 (26): 7512–7516. дои : 10.1021/ja00364a005.
  12. ^ Ральф Г. Пирсон (2005). «Теория химической твердости и функционала плотности» (PDF) . Дж. Хим. Наука . 117 (5): 369–377. CiteSeerX 10.1.1.693.7436 . дои : 10.1007/BF02708340. S2CID  96042488. 
  13. ^ Делчев, Я. Я.; А.И. Кулефф; Дж. Маруани; Ц. Минева; Ф. Захариев (2006). Жан-Пьер Жюльен; Жан Маруани; Дидье Майю (ред.). Метод оболочечной коррекции Струтинского в расширенной схеме Кона-Шэма: применение к потенциалу ионизации, сродству к электрону, электроотрицательности и химической твердости атомов в последних достижениях теории химических и физических систем. Нью-Йорк: Springer-Verlag. стр. 159–177. ISBN 978-1-4020-4527-1.
  14. ^ Фогель Г.К.; Драго, РС (1996). «Модель ECW». Журнал химического образования . 73 (8): 701–707. Бибкод :1996JChEd..73..701В. дои : 10.1021/ed073p701.
  15. ^ Хэнкок, РД; Мартелл, А.Е. (1989). «Дизайн лигандов для селективного комплексообразования ионов металлов в водных растворах». Химические обзоры . 89 (8): 1875–1914. дои : 10.1021/cr00098a011.
  16. ^ Кристе, КО; Диксон, Д.А.; Маклемор, Д.; Уилсон, WW; Шихи, Дж.А.; Боатц, Дж. А. (2000). «В количественной шкале кислотности Льюиса и недавние достижения в химии полиазота». Журнал химии фтора . 101 (2): 151–153. дои : 10.1016/S0022-1139(99)00151-7. ISSN  0022-1139.
  17. ^ Лоуренс, К. и Гал, Дж.Ф. Шкалы основности и сродства Льюиса, данные и измерения, (Wiley 2010), стр. 51 ISBN 978-0-470-74957-9 
  18. ^ Крамер, Р.Э. и Бопп, Т.Т. (1977) Отличный сюжет E и C. Графическое отображение энтальпий образования аддуктов кислот и оснований Льюиса. Журнал химического образования 54 612-613
  19. ^ Механизм реакции нитрита серебра с алкилгалогенидами. Контрастные реакции солей серебра и щелочных металлов с алкилгалогенидами. Алкилирование амбидентных анионов Натан Корнблюм, Роберт А. Смайли, Роберт К. Блэквуд, Дон К. Иффланд Дж. Ам. хим. Соц. ; 1955 год ; 77(23); 6269-6280. дои : 10.1021/ja01628a064
  20. ^ Тишков, Александр А.; Майр, Герберт (2004). «Амбидентная реакционная способность цианид-иона: нарушение принципа HSAB». Angewandte Chemie, международное издание . 44 (1): 142–145. дои : 10.1002/anie.200461640. ПМИД  15599920.
  21. ^ Майр, Герберт (2011). «Прощание с лечением амбидентной реактивности HSAB». Angewandte Chemie, международное издание . 50 (29): 6470–6505. дои : 10.1002/anie.201007100. ПМИД  21726020.