stringtranslate.com

Ионная имплантация

Система ионной имплантации на технологическом объекте LAAS в Тулузе, Франция.

Ионная имплантация — это низкотемпературный процесс, при котором ионы одного элемента ускоряются в твердую мишень, тем самым изменяя физические, химические или электрические свойства мишени. Ионная имплантация используется при производстве полупроводниковых приборов и отделке металлов, а также в исследованиях в области материаловедения . Ионы могут изменить элементный состав мишени (если ионы отличаются по составу от мишени), если они остановятся и останутся в мишени. Ионная имплантация также вызывает химические и физические изменения, когда ионы падают на мишень с высокой энергией. Кристаллическая структура мишени может быть повреждена или даже разрушена каскадами энергетических столкновений , а ионы достаточно высокой энергии (десятки МэВ) могут вызвать ядерную трансмутацию .

Основной принцип

Установка для ионной имплантации с масс-сепаратором

Оборудование для ионной имплантации обычно состоит из источника ионов , в котором производятся ионы желаемого элемента, ускорителя , в котором ионы электростатически ускоряются до высокой энергии или с использованием радиочастоты, и целевой камеры, в которой ионы сталкиваются с мишенью, что это материал для имплантации. Таким образом, ионная имплантация представляет собой частный случай излучения частиц . Каждый ион обычно представляет собой один атом или молекулу, и поэтому фактическое количество материала, имплантированного в мишень, является интегралом по времени ионного тока. Это количество называется дозой. Токи, подаваемые имплантатами, обычно малы (микроамперы), поэтому доза, которую можно имплантировать за разумное время, мала. Следовательно, ионная имплантация находит применение в тех случаях, когда требуемый объем химических изменений невелик.

Типичная энергия ионов находится в диапазоне от 10 до 500 кэВ (от 1600 до 80 000 аДж). Можно использовать энергии в диапазоне от 1 до 10 кэВ (от 160 до 1600 аДж), но это приводит к проникновению всего на несколько нанометров или меньше. Энергии ниже этой приводят к очень небольшому повреждению цели и подпадают под определение ионно-лучевого осаждения . Могут быть использованы и более высокие энергии: распространены ускорители мощностью 5 МэВ (800 000 аДж). Тем не менее, цель часто подвергается серьезному структурному повреждению, а поскольку распределение по глубине широкое ( пик Брэгга ), итоговое изменение состава в любой точке цели будет небольшим.

Энергия ионов, а также вид ионов и состав мишени определяют глубину проникновения ионов в твердое тело: моноэнергетический ионный пучок обычно имеет широкое распределение по глубине. Средняя глубина проникновения называется пробегом ионов. В типичных обстоятельствах диапазон ионов будет составлять от 10 нанометров до 1 микрометра. Таким образом, ионная имплантация особенно полезна в тех случаях, когда желательно, чтобы химическое или структурное изменение произошло вблизи поверхности мишени. Ионы постепенно теряют свою энергию по мере прохождения через твердое тело, как из-за случайных столкновений с атомами мишени (которые вызывают резкую передачу энергии), так и из-за небольшого сопротивления из-за перекрытия электронных орбиталей, что является непрерывным процессом. Потеря энергии ионов в мишени называется остановкой и может быть смоделирована с помощью метода приближения бинарных столкновений .

Ускорительные системы для ионной имплантации обычно подразделяются на среднеточные (токи ионного пучка от 10 мкА до ~ 2 мА), сильноточные (токи ионного пучка до ~ 30 мА), высокоэнергетические (энергия ионов от 200 кэВ до 10 МэВ). ) и очень высокие дозы (эффективный имплантат с дозой более 10 16 ионов/см 2 ). [1]

Источник ионов

Все разновидности конструкций пучков ионной имплантации содержат общие группы функциональных компонентов (см. изображение). Первый основной сегмент ионного пучка включает в себя источник ионов, используемый для генерации различных видов ионов. Источник тесно связан со смещенными электродами для вывода ионов в канал пучка и чаще всего с некоторыми средствами выбора определенного вида ионов для транспортировки в основную секцию ускорителя.

«Массовый» отбор (так же, как в масс-спектрометре ) часто сопровождается прохождением выведенного ионного пучка через область магнитного поля с выходным путем, ограниченным блокирующими отверстиями или «щелями», пропускающими только ионы с определенной величиной произведение массы и скорости/заряда для продолжения движения по лучу. Если поверхность мишени больше диаметра ионного пучка и желательно равномерное распределение имплантированной дозы по поверхности мишени, то используется некоторая комбинация сканирования лучом и движения пластины. Наконец, к имплантированной поверхности применяется некоторый метод сбора накопленного заряда имплантированных ионов, так что доставленную дозу можно измерять непрерывно, а процесс имплантации останавливать на желаемом уровне дозы. [2]

Применение в производстве полупроводниковых приборов.

Допинг

Легирование полупроводников бором, фосфором или мышьяком является распространенным применением ионной имплантации. При имплантации в полупроводник каждый атом легирующей примеси может создавать в полупроводнике носитель заряда после отжига . Дырка может быть создана для примеси p-типа , а электрон — для примеси n- типа . Это изменяет проводимость полупроводника вблизи него. Этот метод используется, например, для регулировки порогового напряжения MOSFET .

Ионная имплантация была разработана как метод создания pn-перехода фотоэлектрических устройств в конце 1970-х — начале 1980-х годов [3] наряду с использованием импульсного электронного пучка для быстрого отжига, [4] хотя импульсного электронного пучка для быстрого отжига до настоящего времени не использовался в коммерческом производстве.

Кремний на изоляторе

Одним из известных методов изготовления подложек кремния на изоляторе (SOI) из обычных кремниевых подложек является процесс SIMOX (разделение путем имплантации кислорода), при котором закопанный имплантат с высокой дозой кислорода преобразуется в оксид кремния посредством процесса высокотемпературного отжига .

Мезотаксия

Мезотаксия — это термин, обозначающий рост кристаллографически соответствующей фазы под поверхностью кристалла-хозяина (сравните с эпитаксией , которая представляет собой рост соответствующей фазы на поверхности подложки). В этом процессе ионы имплантируются в материал с достаточно высокой энергией и дозой для создания слоя второй фазы, а температура контролируется так, чтобы кристаллическая структура мишени не разрушалась. Кристаллическую ориентацию слоя можно спроектировать так, чтобы она соответствовала ориентации мишени, даже если точная кристаллическая структура и постоянная решетки могут сильно отличаться. Например, после имплантации ионов никеля в кремниевую пластину можно вырастить слой силицида никеля , в котором ориентация кристаллов силицида совпадает с ориентацией кристаллов кремния.

Применение в отделке металла.

Закалка инструментальной стали

Азот или другие ионы можно имплантировать в мишень из инструментальной стали (например, сверла). Структурные изменения, вызванные имплантацией, вызывают сжатие поверхности стали, что предотвращает распространение трещин и, таким образом, делает материал более устойчивым к разрушению. Химическое изменение также может сделать инструмент более устойчивым к коррозии.

Отделка поверхности

В некоторых применениях, например в протезных устройствах, таких как искусственные суставы, желательно иметь поверхности, очень устойчивые как к химической коррозии, так и к износу вследствие трения. В таких случаях используется ионная имплантация, чтобы спроектировать поверхности таких устройств для более надежной работы. Как и в случае с инструментальными сталями, модификация поверхности, вызванная ионной имплантацией, включает как сжатие поверхности, предотвращающее распространение трещин, так и легирование поверхности, чтобы сделать ее более химической стойкой к коррозии.

Другие приложения

Ионно-лучевое смешивание

Ионная имплантация может использоваться для достижения смешивания ионных пучков , то есть смешивания атомов разных элементов на границе раздела. Это может быть полезно для достижения градуированных границ раздела или усиления адгезии между слоями несмешивающихся материалов.

Образование наночастиц , индуцированное ионной имплантацией

Ионная имплантация может использоваться для создания наноразмерных частиц в оксидах, таких как сапфир и кремнезем . Частицы могут образовываться в результате осаждения ионно-имплантированных частиц, они могут образовываться в результате образования смешанных оксидов, которые содержат как ионно-имплантированный элемент, так и оксидный субстрат, и они могут образовываться как результат уменьшения количества субстрата, о котором впервые сообщили Хант и Хампикян. [5] [6] [7] Типичная энергия ионного пучка, используемого для производства наночастиц, находится в диапазоне от 50 до 150 кэВ, а плотность флюенса ионов — от 10 16 до 10 18 ионов/см 2 . [8] [9] [10] [11] [12] [13] [ 14] [15] [16] В таблице ниже суммированы некоторые работы, выполненные в этой области для сапфировой подложки. Можно сформировать широкий спектр наночастиц размером от 1 до 20 нм и с композициями, которые могут содержать имплантированные частицы, комбинации имплантированного иона и субстрата или состоять исключительно из катиона, связанного с субстратом. .

Композиционные материалы на основе диэлектриков, таких как сапфир, содержащих дисперсные наночастицы металлов, являются перспективными материалами для оптоэлектроники и нелинейной оптики . [12]

Проблемы с ионной имплантацией

Кристаллографические повреждения

Каждый отдельный ион при ударе создает в целевом кристалле множество точечных дефектов , таких как вакансии и межузельные образования. Вакансии — это точки кристаллической решетки, незанятые атомом: в этом случае ион сталкивается с целевым атомом, в результате чего передается значительное количество энергии целевому атому, так что он покидает свою кристаллическую позицию. Этот целевой атом затем сам становится снарядом в твердом теле и может вызывать последовательные события столкновения . Межузельные образования возникают, когда такие атомы (или сам первоначальный ион) останавливаются в твердом теле, но не находят в решетке свободного места для проживания. Эти точечные дефекты могут мигрировать и группироваться друг с другом, образуя дислокационные петли и другие дефекты.

Возмещение ущерба

Поскольку ионная имплантация вызывает повреждение кристаллической структуры мишени, что часто нежелательно, за процессом ионной имплантации часто следует термический отжиг. Это можно назвать возмещением ущерба.

Аморфизация

Величина кристаллографических повреждений может оказаться достаточной для полной аморфизации поверхности мишени: т.е. она может стать аморфным твердым телом (такое твердое тело, полученное из расплава, называется стеклом ) . В некоторых случаях полная аморфизация мишени предпочтительнее высокодефектного кристалла: аморфизованную пленку можно вырастить заново при более низкой температуре, чем требуется для отжига сильно поврежденного кристалла. В результате повреждения пучка может произойти аморфизация подложки. Например, имплантация ионов иттрия в сапфир при энергии ионного пучка 150 кэВ и флюенсе 5*10 16 Y + /см 2 приводит к образованию аморфного стеклообразного слоя толщиной примерно 110 нм, измеренной от внешней поверхности. [Хант, 1999]

Напыление

Некоторые события столкновения приводят к выбрасыванию ( распылению ) атомов с поверхности, и, таким образом, ионная имплантация будет медленно разъедать поверхность. Эффект заметен только при очень больших дозах.

Ионное каналирование

Кубический кристалл алмаза, вид со стороны <110> , с шестиугольными ионными каналами.

Если мишень имеет кристаллографическую структуру, особенно в полупроводниковых подложках, где кристаллическая структура более открыта, определенные кристаллографические направления обеспечивают гораздо меньшее торможение, чем другие направления. В результате пробег иона может быть намного длиннее, если ион движется точно в определенном направлении, например, в направлении <110> в кремнии и других алмазных кубических материалах. [17] Этот эффект называется каналированием ионов и, как и все эффекты каналирования , является сильно нелинейным: небольшие отклонения от идеальной ориентации приводят к значительным различиям в глубине имплантации. По этой причине большая часть имплантации проводится со смещением на несколько градусов от оси, где небольшие ошибки выравнивания будут иметь более предсказуемые последствия.

Каналирование ионов можно использовать непосредственно в резерфордовском обратном рассеянии и связанных с ним методах в качестве аналитического метода для определения количества и профиля глубины повреждений в кристаллических тонкопленочных материалах.

Безопасность

Опасные материалы

При изготовлении пластин в процессе ионной имплантации часто используются токсичные материалы, такие как арсин и фосфин . Другие распространенные канцерогенные , коррозийные , легковоспламеняющиеся или токсичные элементы включают сурьму , мышьяк , фосфор и бор . Предприятия по производству полупроводников высокоавтоматизированы, но остатки опасных элементов в машинах можно обнаружить во время обслуживания и в оборудовании вакуумных насосов .

Высокие напряжения и ускорители частиц

Источники питания высокого напряжения, используемые в ускорителях ионов, необходимых для имплантации ионов, могут представлять опасность поражения электрическим током . Кроме того, столкновения атомов высоких энергий могут генерировать рентгеновские лучи и, в некоторых случаях, другое ионизирующее излучение и радионуклиды . Помимо высокого напряжения, ускорители частиц , такие как радиочастотные линейные ускорители частиц и лазерные плазменные ускорители кильватерного поля, представляют и другие опасности.

Смотрите также

Рекомендации

  1. ^ «Ионная имплантация | Обзор полупроводников» . Проверено 21 июня 2021 г.
  2. ^ Хэмм, Роберт В.; Хамм, Марианна Э. (2012). Промышленные ускорители и их применение . Всемирная научная. ISBN 978-981-4307-04-8.
  3. ^ А. Дж. Армини, С. Н. Бункер и М. Б. Спитцер, «Оборудование для ионной имплантации без массового анализа для производства солнечных элементов в больших объемах», Proc. 16-я конференция специалистов по фотоэлектрической энергии IEEE , 27–30 сентября 1982 г., Сан-Диего, Калифорния, стр. 895–899.
  4. ^ Г. Лэндис и др., «Аппарат и техника импульсного электронно-лучевого отжига для производства солнечных элементов», Proc. 15-я конференция специалистов по фотоэлектрической энергии IEEE, Орландо, Флорида; 976-980 (1981).
  5. ^ abcd Хант, Иден; Хампикян, Джанет (1999). «Образование наноразмерных частиц в Al2O3 и SiO2, вызванное ионной имплантацией, путем восстановления». Акта Материалия . 47 (5): 1497–1511. Бибкод : 1999AcMat..47.1497H. дои : 10.1016/S1359-6454(99)00028-2.
  6. ^ аб Хант, Иден; Хампикян, Джанет (апрель 2001 г.). «Параметры имплантации, влияющие на образование наночастиц алюминия в оксиде алюминия». Журнал материаловедения . 36 (8): 1963–1973. дои : 10.1023/А: 1017562311310. S2CID  134817579.
  7. ^ Хант, Иден; Хампикян, Джанет. «Метод ионной имплантации, индуцирующий образование встроенных частиц путем восстановления». uspto.gov . ВПТЗ США . Проверено 4 августа 2017 г.
  8. ^ abc Вернер, З.; Писарек, М.; Барлак, М.; Ратайчак, Р.; Староста, В.; Пекошевский, Дж.; Шимчик, В.; Гротшель, Р. (2009). «Химические эффекты в Zr- и коимплантированном сапфире». Вакуум . 83 : S57–S60. Бибкод : 2009Vacuu..83S..57W. doi : 10.1016/j.vacuum.2009.01.022.
  9. ^ abcde Алвес, Э.; Маркес, К.; да Силва, RC; Монтейро, Т.; Соарес, Дж.; МакХарг, К.; Ононье, ЖК; Аллард, LF (2003). «Структурные и оптические исследования имплантированного сапфира Co и Ti». Ядерные приборы и методы в физических исследованиях. Раздел B: Взаимодействие пучков с материалами и атомами . 207 (1): 55–62. Бибкод : 2003НИМПБ.207...55А. дои : 10.1016/S0168-583X(03)00522-6.
  10. ^ Аб Сян, X .; Зу, ХТ; Чжу, С.; Вэй, КМ; Чжан, CF; Солнце, К; Ван, LM (2006). «Наночастицы ZnO, встроенные в сапфир, изготовленные методом ионной имплантации и отжига» (PDF) . Нанотехнологии . 17 (10): 2636–2640. Бибкод : 2006Nanot..17.2636X. дои : 10.1088/0957-4484/17/10/032. hdl : 2027.42/49223 . PMID  21727517. S2CID  11150722.
  11. ^ abc Мота-Сантьяго, Пабло-Эрнесто; Креспо-Соса, Алехандро; Хименес-Эрнандес, Хосе-Луис; Сильва-Перейра, Гектор-Габриэль; Рейес-Эскеда, Хорхе-Алехандро; Оливер, Алисия (2012). «Размерная характеристика нанокристаллов благородных металлов, образовавшихся в сапфире путем ионного облучения и последующего термического отжига». Прикладная наука о поверхности . 259 : 574–581. Бибкод : 2012ApSS..259..574M. дои : 10.1016/j.apsusc.2012.06.114.
  12. ^ abc Степанов, А.Л.; Маркес, К.; Алвес, Э.; да Силва, RC; Сильва, MR; Ганеев, РА; Ряснянский А.И.; Усманов, Т. (2005). «Нелинейно-оптические свойства наночастиц золота, синтезированных методом ионной имплантации в сапфировую матрицу». Письма по технической физике . 31 (8): 702–705. Бибкод : 2005ТеФЛ..31..702С. дои : 10.1134/1.2035371. S2CID  123688388.
  13. ^ аб МакХарг, CJ; Рен, SX; Ханн, доктор юридических наук (1998). «Дисперсии железа в сапфире нанометрового размера, полученные методом ионной имплантации и отжига». Материаловедение и инженерия: А. 253 (1): 1–7. дои : 10.1016/S0921-5093(98)00722-9.
  14. ^ Аб Сян, X .; Зу, ХТ; Чжу, С.; Ван, LM (2004). «Оптические свойства металлических наночастиц в монокристаллах α-Al2O3, имплантированных ионами Ni». Письма по прикладной физике . 84 (1): 52–54. Бибкод : 2004ApPhL..84...52X. дои : 10.1063/1.1636817.
  15. ^ Аб Шарма, СК; Пуджари, ПК (2017). «Встроенные нанокластеры Si в α-оксиде алюминия, синтезированные путем ионной имплантации: исследование с использованием спектроскопии доплеровского уширения, зависящей от глубины». Журнал сплавов и соединений . 715 : 247–253. doi : 10.1016/j.jallcom.2017.04.285.
  16. ^ abc Сян, X; Зу, ХТ; Чжу, С.; Ван, Л.М.; Шуттанандан, В.; Начимуту, П.; Чжан, Ю. (2008). «Фотолюминесценция наночастиц SnO2, внедренных в Al2O3» (PDF) . Журнал физики D: Прикладная физика . 41 (22): 225102. Бибкод : 2008JPhD...41v5102X. дои : 10.1088/0022-3727/41/22/225102. hdl : 2027.42/64215 . S2CID  42709328.
  17. ^ Оринг, Милтон (2002). Материаловедение тонких пленок: осаждение и структура (2-е изд.). Сан-Диего, Калифорния: Academic Press. ISBN 9780125249751. ОСЛК  162575935.

Внешние ссылки