stringtranslate.com

Визуальная система

Зрительная система является физиологической основой зрительного восприятия (способности обнаруживать и обрабатывать свет ). Система обнаруживает, преобразует и интерпретирует информацию, касающуюся света в видимом диапазоне , для построения изображения и мысленной модели окружающей среды. Зрительная система связана с глазом и функционально делится на оптическую систему (включая роговицу и хрусталик ) и нервную систему (включая сетчатку и зрительную кору ).

Зрительная система выполняет ряд сложных задач, основанных на функциях глаза по формированию изображений , включая формирование монокулярных изображений, нейронные механизмы, лежащие в основе стереопсиса , и оценку расстояний до ( восприятие глубины ) и между объектами, восприятие движения , распознавание образов , точная координация движений под визуальным контролем и цветовое зрение . Вместе они облегчают задачи более высокого порядка, такие как идентификация объектов . Нейропсихологическая сторона обработки зрительной информации известна как зрительное восприятие , нарушение которого называется нарушением зрения , а полное отсутствие которого — слепотой . Зрительная система также имеет несколько зрительных функций, не связанных с формированием изображения, независимых от зрительного восприятия, включая зрачковый рефлекс света и циркадный фотоэнцефалит .

В этой статье описывается зрительная система человека, которая является репрезентативной для зрения млекопитающих , и, в меньшей степени, зрительная система позвоночных .

Системный Обзор

Эта диаграмма линейно (если не указано иное) отслеживает проекции всех известных структур, которые позволяют видеть их соответствующие конечные точки в человеческом мозге. Нажмите, чтобы увеличить изображение.
Представление зрительных путей из каждого из 4 квадрантов поля зрения для обоих глаз одновременно.

Оптический

Роговица и хрусталик вместе преломляют свет в небольшое изображение и освещают его на сетчатке . Сетчатка преобразует это изображение в электрические импульсы с помощью палочек и колбочек . Затем зрительный нерв проводит эти импульсы через зрительный канал . Достигнув перекреста зрительных нервов , нервные волокна перекрещиваются (левое становится правым). Затем волокна разветвляются и заканчиваются в трех местах. [1] [2] [3] [4] [5] [6] [7]

Нейронный

Большинство волокон зрительного нерва заканчиваются в латеральном коленчатом ядре (ЛГН). Прежде чем LGN передаст импульсы в V1 зрительной коры (первичной), он измеряет диапазон объектов и помечает каждый крупный объект меткой скорости. Эти теги прогнозируют движение объекта.

LGN также отправляет некоторые волокна на V2 и V3. [8] [9] [10] [11] [12]

V1 выполняет обнаружение краев, чтобы понять пространственную организацию (первоначально в течение 40 миллисекунд, концентрируясь даже на небольших пространственных и цветовых изменениях. Затем, через 100 миллисекунд, после получения переведенной информации LGN, V2 и V3, также начинает концентрироваться на глобальной организации) . V1 также создает восходящую карту значимости , чтобы направлять внимание или смещать взгляд . [13]

Оба V2 пересылают импульсы (прямо и через пульвинар ) на V1 и принимают их. Пульвинар отвечает за саккаду и зрительное внимание. V2 выполняет почти ту же функцию, что и V1, однако он также обрабатывает иллюзорные контуры , определяя глубину путем сравнения левого и правого импульсов (2D-изображения) и различения переднего плана. V2 соединяется с V1 – V5.

V3 помогает обрабатывать « глобальное движение » (направление и скорость) объектов. V3 соединяется с V1 (слабый), V2 и нижней височной корой . [14] [15]

V4 распознает простые формы и получает информацию от V1 (сильный), V2, V3, LGN и пульвинара. [16] Выходы V5 включают V4 и окружающую его область, а также моторную кору глазных движений ( лобное поле глаза и латеральную внутритеменную область ).

Функциональность V5 аналогична функциям других V, однако она объединяет движение локального объекта в глобальное движение на сложном уровне. V6 работает вместе с V5 для анализа движения. V5 анализирует собственное движение, тогда как V6 анализирует движение объектов относительно фона. Основным входом V6 является V1, с дополнениями V5. В V6 находится топографическая карта для зрения. V6 выводит данные в область непосредственно вокруг него (V6A). V6A имеет прямые связи с корой головного мозга, отвечающей за движение рук, включая премоторную кору . [17] [18]

Нижняя височная извилина распознает сложные формы, объекты и лица или совместно с гиппокампом создает новые воспоминания . [19] Претектальная область состоит из семи уникальных ядер . Передние, задние и медиальные претектальные ядра подавляют боль (косвенно), способствуют фазе быстрого сна и рефлексу аккомодации соответственно. [20] Ядро Эдингера -Вестфаля смягчает расширение зрачков и помогает (поскольку обеспечивает парасимпатические волокна) конвергенции глаз и регулировке хрусталика. [21] Ядра зрительного тракта участвуют в плавном следящем движении глаз и рефлексе аккомодации, а также в фазе быстрого сна.

Супрахиазматическое ядро ​​— это область гипоталамуса , которая останавливает выработку мелатонина (косвенно) с первыми лучами солнца. [22]

Состав

Человеческий глаз (горизонтальный разрез)
Изображение, проецируемое на сетчатку, инвертируется из-за особенностей оптики глаза.

Это компоненты зрительного пути, также называемые зрительным путем [23] , которые можно разделить на передние и задние зрительные пути . Передний зрительный путь относится к структурам, участвующим в зрении, перед латеральным коленчатым ядром . Задний зрительный путь относится к структурам после этой точки.

Глаз

Свет, попадающий в глаз, преломляется при прохождении через роговицу . Затем он проходит через зрачок (контролируется радужной оболочкой ) и далее преломляется хрусталиком . Роговица и хрусталик действуют вместе как сложная линза, проецируя перевернутое изображение на сетчатку.

С. Рамон-и-Кахаль , Структура сетчатки млекопитающих , 1900 г.

Сетчатка

Сетчатка состоит из множества фоторецепторных клеток , которые содержат определенные белковые молекулы , называемые опсинами . У человека в сознательном зрении участвуют два типа опсинов: опсины палочек и опсины колбочек . (Третий тип, меланопсин в некоторых ганглиозных клетках сетчатки (RGC), часть механизма биологических часов , вероятно, не участвует в сознательном зрении, поскольку эти RGC проецируются не в латеральное коленчатое ядро , а в претектальное оливковое ядро . [24 ] ] ) Опсин поглощает фотон (частицу света) и передает сигнал клетке через путь передачи сигнала , что приводит к гиперполяризации фоторецептора.

Палочки и колбочки различаются по функциям. Палочки расположены преимущественно на периферии сетчатки и используются для зрения при слабом освещении. Каждый глаз человека содержит 120 миллионов палочек. Колбочки расположены преимущественно в центре (или ямке ) сетчатки. [25] Существует три типа колбочек, которые различаются длинами волн света, которые они поглощают; их обычно называют короткими или синими, средними или зелеными, длинными или красными. Колбочки обеспечивают дневное зрение и могут различать цвета и другие особенности визуального мира при среднем и высоком уровне освещенности. Колбочки крупнее и гораздо менее многочисленны, чем палочки (в каждом глазу человека их 6-7 миллионов). [25]

В сетчатке фоторецепторы образуют синапсы непосредственно с биполярными клетками , которые, в свою очередь, синапсируют с ганглиозными клетками самого внешнего слоя, которые затем передают потенциалы действия в мозг . Значительная часть визуальной обработки возникает из-за паттернов связи между нейронами сетчатки. Около 130 миллионов фоторецепторов поглощают свет, а примерно 1,2 миллиона аксонов ганглиозных клеток передают информацию от сетчатки к мозгу. Обработка в сетчатке включает формирование центрально-окружных рецептивных полей биполярных и ганглиозных клеток сетчатки, а также конвергенцию и расхождение от фоторецептора к биполярной клетке. Кроме того, другие нейроны сетчатки, особенно горизонтальные и амакриновые клетки , передают информацию латерально (от нейрона одного слоя к соседнему нейрону того же слоя), что приводит к более сложным рецептивным полям, которые могут быть как безразличными к цвету, так и чувствительными. к движению или чувствительны к цвету и безразличны к движению. [26]

Механизм генерации зрительных сигналов

Сетчатка адаптируется к изменению освещения с помощью палочек. В темноте хромофор ретиналя имеет изогнутую форму, называемую цис-ретиналем (имеется в виду цис- конформация одной из двойных связей). Когда свет взаимодействует с сетчаткой, он меняет конформацию на прямую форму, называемую транс-ретиналем, и отрывается от опсина. Это называется обесцвечиванием, поскольку очищенный родопсин на свету меняет цвет с фиолетового на бесцветный. Исходно в темноте родопсин не поглощает свет и выделяет глутамат , который подавляет биполярную клетку. Это ингибирует высвобождение нейротрансмиттеров из биполярных клеток в ганглиозные клетки. Когда присутствует свет, секреция глутамата прекращается, поэтому биполярная клетка больше не препятствует высвобождению нейротрансмиттеров в ганглиозную клетку, и, следовательно, можно обнаружить изображение. [27] [28]

Конечным результатом всей этой обработки являются пять различных популяций ганглиозных клеток, которые посылают в мозг визуальную (образующую и не образующую изображение) информацию: [26]

  1. М-клетки с большими центрально-окружающими рецептивными полями, которые чувствительны к глубине , безразличны к цвету и быстро адаптируются к стимулу;
  2. P-клетки с меньшими центрально-окружающими рецептивными полями, чувствительными к цвету и форме ;
  3. К-клетки с очень большими рецептивными полями, расположенными только в центре, чувствительными к цвету и безразличными к форме и глубине;
  4. другая популяция, которая по своей природе светочувствительна ; и
  5. конечная популяция, которая используется для движения глаз. [26]

Исследование, проведенное в 2006 году в Пенсильванском университете, подсчитало, что приблизительная пропускная способность сетчатки человека составляет около 8960 килобит в секунду, тогда как сетчатка морской свинки передает информацию со скоростью около 875 килобит. [29]

В 2007 году Заиди и его коллеги по обе стороны Атлантики, изучавшие пациентов без палочек и колбочек, обнаружили, что новые фоторецепторные ганглиозные клетки у людей также играют роль в сознательном и бессознательном зрительном восприятии. [30] Пиковая спектральная чувствительность составила 481 нм. Это показывает, что в сетчатке есть два пути зрения: один основан на классических фоторецепторах (палочках и колбочках), а другой, недавно обнаруженный, основан на фоторецепторных ганглиозных клетках, которые действуют как рудиментарные детекторы визуальной яркости.

Фотохимия

Работу камеры часто сравнивают с работой глаза, главным образом потому, что она фокусирует свет от внешних объектов в поле зрения на светочувствительную среду. В случае с камерой этим носителем является пленка или электронный датчик; в случае глаза это набор зрительных рецепторов. Благодаря этому простому геометрическому подобию, основанному на законах оптики, глаз действует как преобразователь , как и ПЗС-камера .

В зрительной системе ретиналь , технически называемый ретинен 1 или «ретинальдегид», представляет собой светочувствительную молекулу, обнаруженную в палочках и колбочках сетчатки . Сетчатка является основной структурой, участвующей в преобразовании света в зрительные сигналы, то есть нервные импульсы в глазной системе центральной нервной системы . Под действием света молекула сетчатки меняет конфигурацию, в результате чего генерируется нервный импульс . [26]

Зрительного нерва

Информационный поток из глаз (вверху), пересекающийся в перекресте зрительных нервов , объединяет информацию левого и правого глаза в зрительном тракте и наслаивает левые и правые зрительные стимулы в латеральном коленчатом ядре . V1 выделен красным внизу изображения. (изображение 1543 года из «Фабрики » Андреаса Везалия )

Информация об изображении через глаз передается в мозг по зрительному нерву . Различные популяции ганглиозных клеток сетчатки передают информацию в мозг через зрительный нерв. Около 90% аксонов зрительного нерва идут к латеральному коленчатому ядру таламуса . Эти аксоны происходят из ганглиозных клеток M, P и K сетчатки, см. выше. Эта параллельная обработка важна для реконструкции визуального мира; каждый тип информации проходит свой путь к восприятию . Другая популяция отправляет информацию в верхние холмики среднего мозга , которые помогают контролировать движения глаз ( саккады ) [31] , а также другие двигательные реакции.

Последняя популяция светочувствительных ганглиозных клеток , содержащая меланопсин для фоточувствительности , посылает информацию через ретиногипоталамический тракт в претектум ( зрачковый рефлекс ), в несколько структур, участвующих в контроле циркадных ритмов и сна , таких как супрахиазматическое ядро ​​(биологические часы), и к вентролатеральному преоптическому ядру (область, участвующая в регуляции сна ). [32] Недавно обнаруженная роль фоторецепторных ганглиозных клеток заключается в том, что они опосредуют сознательное и бессознательное зрение, действуя как рудиментарные детекторы визуальной яркости, как показано в беспалочковых глазах без колбочек. [30]

Оптический перекрест

Зрительные нервы обоих глаз встречаются и пересекаются в зрительном перекресте [33] [34] у основания гипоталамуса головного мозга. В этот момент информация, поступающая от обоих глаз, объединяется, а затем разделяется в соответствии с полем зрения . Соответствующие половины поля зрения (правая и левая) отправляются для обработки в левое и правое полушария мозга соответственно. То есть правая сторона первичной зрительной коры имеет дело с левой половиной поля зрения обоих глаз, и аналогично для левого полушария мозга. [31] Небольшая область в центре поля зрения обрабатывается избыточно обеими половинами мозга.

Зрительный тракт

Информация из правого поля зрения (теперь находящегося в левом полушарии мозга) поступает в левый зрительный тракт. Информация из левого поля зрения попадает в правый зрительный тракт. Каждый зрительный тракт заканчивается латеральным коленчатым ядром (ЛГН) таламуса.

Шесть слоев в LGN

Латеральное коленчатое ядро

Латеральное коленчатое ядро ​​(LGN) представляет собой сенсорное релейное ядро ​​в таламусе головного мозга. LGN состоит из шести слоев у человека и других приматов , начиная с катарнов , включая церкопитецид и человекообразных обезьян . Слои 1, 4 и 6 соответствуют информации от контрлатеральных (перекрещенных) волокон носовой сетчатки (височного поля зрения); слои 2, 3 и 5 соответствуют информации от ипсилатеральных (неперекрещенных) волокон височной сетчатки (носового поля зрения). Первый слой содержит М-клетки, которые соответствуют М- клеткам зрительного нерва противоположного глаза и отвечают за глубину или движение. Четвертый и шестой слои LGN также соединяются с противоположным глазом, но с P-клетками (цвет и края) зрительного нерва. Напротив, второй, третий и пятый слои LGN соединяются с М-клетками и P ( парвоцеллюлярными ) клетками зрительного нерва той же стороны мозга, что и соответствующий LGN. В развернутом виде шесть слоев LGN занимают площадь кредитной карты и примерно в три раза толще ее. LGN свернут в два эллипсоида размером и формой примерно с два маленьких птичьих яйца. Между шестью слоями находятся клетки меньшего размера, которые получают информацию от К-клеток (цвет) сетчатки. Нейроны LGN затем передают зрительное изображение в первичную зрительную кору (V1), которая расположена в задней части мозга ( задний конец ) в затылочной доле в области шпорной борозды и рядом с ней . LGN — это не просто ретрансляционная станция, но и центр обработки данных; он получает взаимную информацию от коркового и подкоркового слоев и взаимную иннервацию от зрительной коры. [26]

Схема зрительного тракта с разложением изображения по пути до простых корковых клеток (упрощенно)

Оптическое излучение

Оптические излучения , по одному на каждой стороне мозга, передают информацию от латерального коленчатого ядра таламуса к слою 4 зрительной коры . Нейроны P-слоя LGN передают сигнал V1 слою 4C β. Нейроны слоя M передают сигналы на слой V1 4C α. Нейроны слоя K в LGN передают сигналы крупным нейронам, называемым каплями, в слоях 2 и 3 V1. [26]

Существует прямое соответствие от углового положения в зрительном поле глаза на всем протяжении зрительного тракта до положения нерва в V1 (до V4, т.е. первичных зрительных зон. После этого зрительный путь примерно разделяется на вентральный и дорсальный пути ).

Зрительная кора

Зрительная кора :
V1; В2; В3; В4; V5 (также называемый MT)

Зрительная кора — крупнейшая система человеческого мозга, отвечающая за обработку зрительного изображения. Он расположен в задней части мозга (выделен на изображении), над мозжечком . Область, которая получает информацию непосредственно от LGN, называется первичной зрительной корой (также называемой V1 и полосатой корой). Он создает восходящую карту значимости поля зрения, чтобы направить внимание или взгляд на важные визуальные места [35] , следовательно, выбор зрительной входной информации вниманием начинается с V1 [36] вдоль зрительного пути. Затем визуальная информация проходит через корковую иерархию. Эти области включают V2, V3, V4 и область V5/MT (точное соединение зависит от вида животного). Эти вторичные зрительные области (совместно называемые экстрастриарной зрительной корой) обрабатывают широкий спектр зрительных примитивов. Нейроны в V1 и V2 избирательно реагируют на полоски определенной ориентации или на комбинации полосок. Считается, что они поддерживают обнаружение краев и углов. Аналогичным образом здесь обрабатывается основная информация о цвете и движении. [37]

Хайдер и др. (2002) обнаружили, что нейроны, включающие V1, V2 и V3, могут обнаруживать стереоскопические иллюзорные контуры ; они обнаружили, что стереоскопические стимулы под углом до 8° могут активировать эти нейроны. [38]

Зрительная кора активна даже во время фМРТ покоя .

Зрительная ассоциативная кора

По мере того как визуальная информация проходит через визуальную иерархию, сложность нейронных представлений возрастает. В то время как нейрон V1 может избирательно реагировать на сегмент линии определенной ориентации в определенном ретинотопическом месте, нейроны латерального затылочного комплекса избирательно реагируют на целый объект (например, рисунок фигуры), а нейроны зрительной ассоциативной коры могут избирательно реагировать на человеческие лица или конкретный объект.

Наряду с этой возрастающей сложностью нейронной репрезентации может возникнуть уровень специализации обработки информации на два различных пути: дорсальный поток и вентральный поток ( гипотеза двух потоков [39] , впервые предложенная Унгерлейдером и Мишкиным в 1982 году). Дорсальный поток, обычно называемый потоком «где», участвует в пространственном внимании (скрытом и явном) и сообщается с областями, которые контролируют движения глаз и рук. Совсем недавно эту область назвали потоком «как», чтобы подчеркнуть ее роль в направлении поведения в пространственные местоположения. Вентральный поток, обычно называемый потоком «что», участвует в распознавании, идентификации и классификации зрительных стимулов.

Внутритеменная борозда (красная)

Однако до сих пор ведется много споров о степени специализации в рамках этих двух направлений, поскольку на самом деле они тесно взаимосвязаны. [40]

Гораций Барлоу предложил гипотезу эффективного кодирования в 1961 году как теоретическую модель сенсорного кодирования в мозге . [41] Ограничения в применимости этой теории к первичной зрительной коре (V1) мотивировали гипотезу значимости V1 , согласно которой V1 создает восходящую карту значимости для экзогенного направления внимания. [35] Когда выбор внимания находится в центре внимания, зрение рассматривается как состоящее из стадий кодирования, выбора и декодирования. [42]

Сеть режима по умолчанию представляет собой сеть областей мозга, которые активны, когда человек бодрствует и находится в состоянии покоя. Режим зрительной системы по умолчанию можно отслеживать в состоянии покоя фМРТ : Fox и др. (2005) обнаружили, что «человеческий мозг по своей природе организован в виде динамических, антикоррелированных функциональных сетей» [43] , в которых зрительная система переключается с состояния покоя на внимание.

В теменной доле латеральная и вентральная интратеменная кора участвуют в зрительном внимании и саккадических движениях глаз. Эти области находятся в внутритеменной борозде (отмечены красным на соседнем изображении).

Разработка

Младенчество

Новорожденные имеют ограниченное цветовосприятие . [44] Одно исследование показало, что 74% новорожденных различают красный цвет, 36% зеленый, 25% желтый и 14% синий. Через месяц производительность «несколько улучшилась». [45] Глаза младенца не способны аккомодировать . Педиатры могут провести невербальное тестирование для оценки остроты зрения новорожденного, выявления близорукости и астигматизма , а также оценить расположение и положение глаз. Острота зрения повышается примерно с 20/400 при рождении до примерно 20/25 в возрасте 6 месяцев. Все это происходит потому, что нервные клетки сетчатки и мозга, контролирующие зрение, развиты не полностью.

Детство и юность

Восприятие глубины , фокусировка, отслеживание и другие аспекты зрения продолжают развиваться в раннем и среднем детстве. Результаты недавних исследований, проведенных в США и Австралии, свидетельствуют о том, что количество времени, которое дети школьного возраста проводят на открытом воздухе, при естественном освещении, может иметь определенное влияние на развитие у них близорукости . Состояние имеет тенденцию несколько ухудшаться в детстве и подростковом возрасте, но стабилизируется в зрелом возрасте. Считается, что более выраженная близорукость (близорукость) и астигматизм передаются по наследству. Детям с этим заболеванием, возможно, придется носить очки.

Совершеннолетие

Зрение часто является одним из первых чувств, на которое влияет старение. С возрастом происходит ряд изменений:

Другие функции

Баланс

Наряду с проприоцепцией и вестибулярной функцией зрительная система играет важную роль в способности человека контролировать равновесие и сохранять вертикальное положение. Когда эти три состояния изолировали и проверяли баланс, было обнаружено, что зрение является наиболее важным фактором, способствующим балансу, играя большую роль, чем любой из двух других внутренних механизмов. [46] Ясность, с которой человек может видеть окружающую среду, а также размер поля зрения, восприимчивость человека к свету и бликам, а также плохое восприятие глубины играют важную роль в обеспечении обратной связи с мозгом. движение тела в окружающей среде. Все, что влияет на любую из этих переменных, может оказать негативное влияние на баланс и поддержание осанки. [47] Этот эффект наблюдался в исследованиях с участием пожилых людей по сравнению с молодыми людьми из контрольной группы, [48] у пациентов с глаукомой по сравнению с контрольной группой того же возраста, [49] у пациентов с катарактой до и после операции, [50] и даже в чем-то таком простом, как носить защитные очки. [51] Также было показано, что монокулярное зрение (зрение одним глазом) отрицательно влияет на баланс, что было замечено в ранее упомянутых исследованиях катаракты и глаукомы, [49] [50] , а также у здоровых детей и взрослых. [52]

По данным Поллока и др. (2010) инсульт является основной причиной специфических нарушений зрения, чаще всего выпадения полей зрения ( гомонимная гемианопсия , дефект поля зрения). Тем не менее, доказательства эффективности экономически эффективных вмешательств, направленных на устранение этих дефектов поля зрения, все еще противоречивы. [53]

Клиническое значение

Поражения зрительных путей
Сверху вниз:
1. Полная потеря зрения правого глаза
2. Битемпоральная гемианопсия
3. Гомонимная гемианопсия
4. Квадрантанопсия
5 и 6. Квадрантанопия с сохранением макулы

Правильная функция зрительной системы необходима для восприятия, обработки и понимания окружающей среды. Трудности в восприятии, обработке и понимании светового потока могут отрицательно повлиять на способность человека общаться, учиться и эффективно выполнять повседневные задачи.

У детей ранняя диагностика и лечение нарушений функции зрительной системы являются важным фактором, обеспечивающим достижение ключевых показателей социального, академического и речевого/языкового развития.

Катаракта – это помутнение хрусталика, которое, в свою очередь, влияет на зрение. Хотя оно может сопровождаться пожелтением, помутнение и пожелтение могут возникать отдельно. Обычно это результат старения, болезней или употребления наркотиков.

Пресбиопия – это нарушение зрения, вызывающее дальнозоркость . Хрусталик глаза становится слишком негибким, чтобы приспособиться к нормальному расстоянию чтения, фокус имеет тенденцию оставаться фиксированным на большом расстоянии.

Глаукома — это тип слепоты, который начинается на краю поля зрения и прогрессирует внутрь. Это может привести к туннельному зрению . Обычно это затрагивает внешние слои зрительного нерва, иногда в результате скопления жидкости и чрезмерного давления в глазу. [54]

Скотома — это тип слепоты, при которой в поле зрения образуется небольшое слепое пятно, обычно вызванное повреждением первичной зрительной коры.

Гомонимная гемианопсия — это тип слепоты, при которой полностью разрушается одна сторона поля зрения, что обычно вызвано повреждением первичной зрительной коры.

Квадрантанопия — это тип слепоты, при которой разрушается только часть поля зрения, что обычно вызвано частичным повреждением первичной зрительной коры. Это очень похоже на гомонимную гемианопсию, но в меньшей степени.

Прозопагнозия , или лицевая слепота, — это заболевание головного мозга, приводящее к неспособности распознавать лица. Это нарушение часто возникает после повреждения веретенообразной области лица .

Зрительная агнозия , или агнозия зрительных форм, — это заболевание головного мозга, которое приводит к неспособности распознавать объекты. Это расстройство часто возникает после повреждения вентрального русла .

Другие животные

Разные виды способны видеть разные части светового спектра ; например, пчелы могут видеть в ультрафиолете , [55] в то время как гадюки могут точно нацеливаться на добычу с помощью своих ямочных органов , чувствительных к инфракрасному излучению. [56] Креветки -богомолы обладают, пожалуй, самой сложной зрительной системой среди всех видов. Глаз креветки-богомола содержит 16 цветных чувствительных колбочек, тогда как у человека их только три. Разнообразие колбочек позволяет им воспринимать расширенный набор цветов как механизм выбора партнера, уклонения от хищников и обнаружения добычи. [57] Рыба-меч также обладает впечатляющей зрительной системой. Глаз рыбы -меч может генерировать тепло , чтобы лучше справляться с обнаружением добычи на глубине до 2000 футов. [58] Некоторые одноклеточные микроорганизмы , динофлагелляты варновийид , имеют глазоподобные оцеллоиды с аналогичными структурами хрусталика и сетчатки многоклеточного глаза. [59] Бронированная оболочка хитона Acanthopleura granulata также покрыта сотнями кристаллических глазков арагонита , называемых глазками , которые могут образовывать изображения . [60]

У многих веерных червей , таких как Acromegalomma прерывание , которые живут в трубках на морском дне Большого Барьерного рифа , на щупальцах развились сложные глаза, которые они используют для обнаружения посягательств. Если движение обнаружено, веерные черви быстро отдерут свои щупальца. Бок и др. обнаружили в глазах веерного червя опсины и G-белки , которые ранее наблюдались только в простых ресничных фоторецепторах в мозге некоторых беспозвоночных , в отличие от рабдомерных рецепторов в глазах большинства беспозвоночных. [61]

Только высшие приматы Старого Света (африканские) и человекообразные обезьяны ( макаки , ​​человекообразные обезьяны , орангутанги ) обладают таким же типом трехконусных фоторецепторов цветового зрения, как и люди, тогда как низшие приматы Нового Света (Южной Америки) ( обезьяны-пауки , беличьи обезьяны , кебусы) обезьяны ) обладают двухконусным фоторецептором цветового зрения. [62]

История

Во второй половине XIX века были идентифицированы многие мотивы нервной системы, такие как учение о нейронах и локализация мозга, которые связаны с тем, что нейрон является основной единицей нервной системы, и функциональной локализацией в мозге соответственно. Они станут принципами молодой нейробиологии и будут способствовать дальнейшему пониманию зрительной системы.

Идея о том, что кора головного мозга разделена на функционально различные коры, отвечающие за такие способности, как осязание ( соматосенсорная кора ), движение ( моторная кора ) и зрение ( зрительная кора ), было впервые предложено Францем Йозефом Галлем в 1810 году. [63] Доказательства существования функционально различных областей мозга (и, в частности, коры головного мозга) накапливались на протяжении всего XIX века благодаря открытиям Поля Брока из языкового центра (1861 г.), а также Густава Фрича и Эдуарда Хитцига из моторной коры ( 63). 1871). [63] [64] Основываясь на избирательном повреждении частей мозга и функциональных эффектах возникающих повреждений , Дэвид Ферье в 1876 году предположил, что зрительная функция локализована в теменной доле мозга . [64] В 1881 году Герман Мунк более точно локализовано зрение в затылочной доле , где, как теперь известно, находится первичная зрительная кора . [64]

В 2014 году в учебнике «Понимание зрения: теория, модели и данные» [42] показано, как связать нейробиологические данные и визуальное поведение/психологические данные с помощью теоретических принципов и вычислительных моделей.

Смотрите также

Рекомендации

  1. ^ «Как видит человеческий глаз». ВебМД . Эд. Алан Козарски. WebMD, 3 октября 2015 г. Интернет. 27 марта 2016 г.
  2. ^ Чем, Кер. «Как работает человеческий глаз». ЖиваяНаука . TechMedia Network , 10 февраля 2010 г. Интернет. 27 марта 2016 г.
  3. ^ «Как работает человеческий глаз | Слои/роль роговицы | Световые лучи». НККФ. Глазной институт Гэвина Герберта. Веб. 27 марта 2016 г.
  4. ^ Альбертина, Курт. Карточки с анатомией Бэррона
  5. ^ Тиллотсон, Джоан. Макканн, Стефани. Медицинские карточки Каплана. 2 апреля 2013 г.
  6. ^ "Оптический хиазма". Функция зрительного перекреста, анатомия и определение. Медицинская группа Healthline, 9 марта 2015 г. Интернет. 27 марта 2016 г.
  7. ^ Джеффри, Г. и М.М. Неве. «Формирование хиазм у человека принципиально отличается от такового у мыши». Nature.com . Издательская группа Nature , 21 марта 2007 г. Интернет. 27 марта 2016 г.
  8. ^ Кард, Дж. Патрик и Роберт Ю. Мур. «Организация латеральных коленно-гипоталамических связей у Крысы». Интернет-библиотека Уайли . 1 июня. 1989. Интернет. 27 марта 2016 г.
  9. ^ Мерфи, Пенелопа К., Саймон Г. Дакетт и Адам М. Силлито. «Связи обратной связи с латеральным коленчатым ядром и свойствами реакции коры». Обратная связь с латеральным ядром коленчатого сустава и свойствами коркового ответа. 19 ноября 1999 г. Интернет. 27 марта 2016 г.
  10. ^ Шиллер, PH и Дж. Г. Мальпели. «Функциональная специфика пластинок латерального коленчатого ядра макаки-резуса». Журналы АПС . 1 мая 1978 г. Интернет. 27 марта 2016 г.
  11. ^ Сингер, В. и Ф. Шмилау. «Роль зрительной коры в бинокулярных взаимодействиях в латеральном ядре коленчатого сустава кошки». Роль зрительной коры в бинокулярных взаимодействиях в латеральном ядре коленчатого сустава кошки. 21 января 1977 г. Интернет. 27 марта 2016 г.
  12. ^ Рид, Р. Клей и Хосе-Мануэль Алонсо. «Специфика моносинаптических связей от таламуса к зрительной коре». Письма к природе. Издательская группа Nature, 3 октября 1995 г. Интернет. 27 марта 2016 г.
  13. ^ Чжаопин, Л. «Гипотеза V1 — создание восходящей карты значимости для предварительного отбора и сегментации», 2014, в главе 5 книги «Понимание видения: теория, модели и данные», см. https://www. .oxfordscholarship.com/view/10.1093/acprof:oso/9780199564668.001.0001/acprof-9780199564668-chapter-5
  14. ^ Хайм, Стефан, Саймон Б. Эйкхофф и др. «Эффективное соединение левого BA 44, BA 45 и нижней височной извилины во время лексических и фонологических решений, идентифицированных с помощью DCM». Интернет-библиотека Уайли . 19 декабря 2007 г. Интернет. 27 марта 2016 г.
  15. ^ Катани, Марко и Дерек К. Джонс. "Мозг." Затылочно-височные связи в человеческом мозге. 23 июня 2003 г. Интернет. 27 марта 2016 г.
  16. ^ Беневенто, Луи А. и Грегг П. Стрэндедж. «Организация проекций ретино- и неретино-реципиентных ядер претектального комплекса и слоев верхнего бугорка на латеральный пульвинар и медиальный пульвинар у макаки». Наука Директ . 1 июля 1983 г. Интернет. 27 марта 2016 г.
  17. ^ Хирш, Дж. А. и К. Д. Гилберт. «Журнал Неврологического общества нейробиологии». Синаптическая физиология горизонтальных связей в зрительной коре кошки. 1 июня 1991 г. Интернет. 27 марта 2016 г.
  18. ^ Шалл, Дж. Д., А. Морель, DJ Кинг и Дж. Буллиер. «Журнал Неврологического общества нейробиологии». Топография связей зрительной коры с лобным полем глаза у макак: конвергенция и разделение потоков обработки. 1 июня 1995 г. Интернет. 27 марта 2016 г.
  19. ^ Мозер, Мэй-Бритт и Эдвард И. Мозер. «Функциональная дифференциация в гиппокампе». Интернет-библиотека Уайли. 1998. Интернет. 27 марта 2016 г.
  20. ^ Канасеки, Т. и Дж. М. Спрэг. «Анатомическая организация претектальных ядер и тектальных пластинок у кошки». Анатомическая организация претектальных ядер и тектальных пластинок у кошки. 1 декабря 1974 г. Интернет. 27 марта 2016 г.
  21. ^ Райнер, Антон и Харви Дж. Картен. «Парасимпатический глазной контроль — функциональные подразделения и схемы птичьего ядра Эдингера-Вестфаля». Science Direct. 1983. Интернет. 27 марта 2016 г.
  22. ^ Уэлш, Дэвид К. и Диомед Э. Логотетис. «Отдельные нейроны, диссоциированные из супрахиазматического ядра крысы, экспрессируют независимо фазированные циркадные ритмы». Наука Директ . Гарвардский университет , апрель 1995 г. Интернет. 27 марта 2016 г.
  23. ^ «Оптический путь - Заболевания глаз». Руководство MSD Профессиональная версия . Проверено 18 января 2022 г.
  24. ^ Гюлер, AD; и другие. (май 2008 г.). «Меланопсиновые клетки являются основными проводниками палочек/колбочек для зрения, не формирующего изображение» (Аннотация) . Природа . 453 (7191): 102–5. Бибкод : 2008Natur.453..102G. дои : 10.1038/nature06829. ПМЦ 2871301 . ПМИД  18432195. 
  25. ^ аб Нейв, Р. «Свет и видение». Гиперфизика . Проверено 13 ноября 2014 г.
  26. ^ abcdef Тове 2008
  27. ^ Саладин, Кеннет Д. Анатомия и физиология: единство формы и функции . 5-е изд. Нью-Йорк: МакГроу-Хилл , 2010.
  28. ^ «Webvision: физиология ганглиозных клеток». Архивировано из оригинала 23 января 2011 г. Проверено 8 декабря 2018 г.
  29. ^ «Расчет скорости зрения».
  30. ^ Аб Заиди Ф.Х., Халл Дж.Т., Пирсон С.Н. и др. (декабрь 2007 г.). «Коротковолновая световая чувствительность циркадного, зрачкового и зрительного восприятия у людей, не имеющих внешней сетчатки». Курс. Биол. 17 (24): 2122–8. дои : 10.1016/j.cub.2007.11.034. ПМК 2151130 . ПМИД  18082405.  
  31. ^ Аб Сундстен, Джон В.; Нолти, Джон (2001). Человеческий мозг: введение в его функциональную анатомию . Сент-Луис: Мосби. стр. 410–447. ISBN 978-0-323-01320-8. ОСЛК  47892833.
  32. ^ Лукас Р.Дж., Хаттар С., Такао М., Берсон Д.М., Фостер Р.Г., Яу К.В. (январь 2003 г.). «Снижение зрачкового светового рефлекса при высокой освещенности у мышей с нокаутом меланопсина». Наука . 299 (5604): 245–7. Бибкод : 2003Sci...299..245L. CiteSeerX 10.1.1.1028.8525 . дои : 10.1126/science.1077293. PMID  12522249. S2CID  46505800. 
  33. ^ Тернер, Ховард Р. (1997). «Оптика» . Наука в средневековом исламе: иллюстрированное введение . Остин: Издательство Техасского университета. п. 197. ИСБН 978-0-292-78149-8. ОСЛК  440896281.
  34. ^ Везалий 1543 г.
  35. ^ Аб Ли, Z (2002). «Карта значимости в первичной зрительной коре». Тенденции в когнитивных науках . 6 (1): 9–16. дои : 10.1016/s1364-6613(00)01817-9. PMID  11849610. S2CID  13411369.
  36. ^ Чжаопин, Л. (2019). «Новая основа для понимания зрения с точки зрения первичной зрительной коры». Современное мнение в нейробиологии . 58 : 1–10. doi :10.1016/j.conb.2019.06.001. PMID  31271931. S2CID  195806018.
  37. ^ Джессел, Томас М.; Кандел, Эрик Р.; Шварц, Джеймс Х. (2000). «27. Центральные зрительные пути». Принципы нейронауки . Нью-Йорк: МакГроу-Хилл. стр. 533–540. ISBN 978-0-8385-7701-1. ОСЛК  42073108.
  38. ^ Хайдер, Барбара; Спиллманн, Лотар; Петеранс, Эстер (2002) «Стереоскопические иллюзорные контуры — реакции корковых нейронов и человеческое восприятие» J. Cognitive Neuroscience 14:7, стр. 1018-29. Архивировано 11 октября 2016 г. в Wayback Machine, дата доступа = 18 мая 2014 г.
  39. ^ Мишкин М, Унгерлейдер Л.Г. (1982). «Вклад стриарных входов в зрительно-пространственные функции теменно-преокципитальной коры у обезьян». Поведение. Мозговой Рес . 6 (1): 57–77. дои : 10.1016/0166-4328(82)90081-X. PMID  7126325. S2CID  33359587.
  40. ^ Фаривар Р. (2009). «Дорсально-вентральная интеграция в распознавании объектов». Мозговой Рес. Преподобный . 61 (2): 144–53. doi :10.1016/j.brainresrev.2009.05.006. PMID  19481571. S2CID  6817815.
  41. ^ Барлоу, Х. (1961) «Возможные принципы, лежащие в основе трансформации сенсорных сообщений» в «Сенсорной коммуникации» , MIT Press.
  42. ^ Аб Чжаопин, Ли (2014). Понимание видения: теория, модели и данные . Соединенное Королевство: Издательство Оксфордского университета. ISBN 978-0-19-882936-2.
  43. ^ Фокс, Майкл Д.; и другие. (2005). «С обложки: Человеческий мозг по своей природе организован в виде динамических, антикоррелированных функциональных сетей». ПНАС . 102 (27): 9673–9678. Бибкод : 2005PNAS..102.9673F. дои : 10.1073/pnas.0504136102 . ПМК 1157105 . ПМИД  15976020. 
  44. ^ Лейн, Кеннет А. (2012). Зрительное внимание у детей: теории и занятия. СЛАК. п. 7. ISBN 978-1-55642-956-9. Проверено 4 декабря 2014 г.
  45. ^ Адамс, Рассел Дж.; Мужество, Мэри Л.; Мерсер, Мишель Э. (1994). «Систематическое измерение цветового зрения человека у новорожденных». Исследование зрения . 34 (13): 1691–1701. дои : 10.1016/0042-6989(94)90127-9. ISSN  0042-6989. PMID  7941376. S2CID  27842977.
  46. ^ Ханссон Э.Э., Бекман А., Хоканссон А. (декабрь 2010 г.). «Влияние зрения, проприоцепции и положения вестибулярного органа на постуральное влияние» (PDF) . Акта Отоларингол . 130 (12): 1358–63. дои : 10.3109/00016489.2010.498024. PMID  20632903. S2CID  36949084.
  47. ^ Уэйд М.Г., Джонс Дж. (июнь 1997 г.). «Роль зрения и пространственной ориентации в поддержании позы». Физ Тер . 77 (6): 619–28. дои : 10.1093/ptj/77.6.619 . ПМИД  9184687.
  48. ^ Тисдейл Н., Стельмах Г.Е., Бройниг А. (ноябрь 1991 г.). «Характеристики постуральных колебаний пожилых людей в нормальных и измененных условиях зрения и опорной поверхности». Дж. Геронтол . 46 (6): B238–44. дои : 10.1093/geronj/46.6.B238. ПМИД  1940075.
  49. ^ аб Шабана Н., Корнило-Перес В., Друлес Дж., Го Дж.К., Ли Г.С., Чу П.Т. (июнь 2005 г.). «Постуральная стабильность при первичной открытоугольной глаукоме». Клин. Экспериментируйте. Офтальмол . 33 (3): 264–73. дои : 10.1111/j.1442-9071.2005.01003.x. PMID  15932530. S2CID  26286705.
  50. ^ аб Шварц С., Сигал О., Баркана Ю., Швесиг Р., Авни И., Морад Ю. (март 2005 г.). «Влияние операции по удалению катаракты на постуральный контроль». Вкладывать деньги. Офтальмол. Вис. Наука . 46 (3): 920–4. дои : 10.1167/iovs.04-0543 . ПМИД  15728548.
  51. ^ Уэйд Л.Р., Веймар WH, Дэвис Дж. (декабрь 2004 г.). «Влияние индивидуальных защитных очков на стабильность позы». Эргономика . 47 (15): 1614–23. дои : 10.1080/00140130410001724246. PMID  15545235. S2CID  22219417.
  52. ^ Барела Х.А., Санчес М., Лопес А.Г., Разук М., Мораес Р. (2011). «Использование монокулярных и бинокулярных визуальных сигналов для контроля позы у детей». Джей Вис . 11 (12): 10. дои : 10.1167/11.12.10 . ПМИД  22004694.
  53. ^ «Видение». Международный журнал инсульта . 5 (3_дополнение): 67. 2010. doi :10.1111/j.1747-4949.2010.00516.x.
  54. ^ Публикации Гарвардского здравоохранения (2010). Старение глаз: профилактика и лечение заболеваний глаз. Публикации Гарвардского здравоохранения. п. 20. ISBN 978-1-935555-16-2. Проверено 15 декабря 2014 г.
  55. ^ Беллингем Дж., Уилки С.Э., Моррис А.Г., Боумейкер Дж.К., Хант Д.М. (февраль 1997 г.). «Характеристика гена опсина, чувствительного к ультрафиолету, у медоносной пчелы Apis mellifera». Евро. Дж. Биохим . 243 (3): 775–81. дои : 10.1111/j.1432-1033.1997.00775.x . ПМИД  9057845.
  56. ^ Safer AB, Грейс М.С. (сентябрь 2004 г.). «Инфракрасная визуализация гадюк: дифференциальные реакции кроталиновых и гадючатых змей на парные тепловые цели». Поведение. Мозговой Рес . 154 (1): 55–61. дои : 10.1016/j.bbr.2004.01.020. PMID  15302110. S2CID  39736880.
  57. ^ "(2018) Национальный аквариум "Креветка-богомол-павлин"". Архивировано из оригинала 4 мая 2018 г. Проверено 06 марта 2018 г.
  58. ^ Дэвид Флешлер (15 октября 2012 г.) Sun-Sentinel Южной Флориды. Архивировано 3 февраля 2013 г. в archive.today ,
    • Рыба-меч греет глаза
  59. ^ У одноклеточных планктонных организмов глаза как у животных, говорят ученые
    • «Молекулярная филогения динофлагеллят, несущих оцеллоид (Warnowiaceae), как следует из последовательностей рДНК SSU и LSU»
  60. ^ Ли, Л; Коннорс, MJ; Колле, М; Англия, GT; Спейзер, Д.И.; Сяо, X; Айзенберг, Дж; Ортис, К. (2015). «Многофункциональность хитоновой биоминерализованной брони с интегрированной зрительной системой». Наука . 350 (6263): 952–6. дои : 10.1126/science.aad1246 . ПМИД  26586760.
  61. ^ Бок, Майкл Дж.; Портер, Меган Л.; Нильссон, Дэн-Эрик (июль 2017 г.). «Фототрансдукция в радиолярных глазах веерного червя». Современная биология . 27 (14): 698–699 рэндов. дои : 10.1016/j.cub.2017.05.093 . hdl : 1983/3793ef99-753c-4c60-8d91-92815395387a . ПМИД  28743013. цитируется по книге «Эволюция глаз веерного червя» (1 августа 2017 г.) Phys.org
  62. ^ Маргарет., Ливингстон (2008). Видение и искусство: биология видения . Хьюбел, Дэвид Х. Нью-Йорк: Абрамс. ISBN 978-0-8109-9554-3. ОКЛК  192082768.
  63. ^ аб Гросс CG (1994). «Как нижняя височная кора стала зрительной областью». Цереб. Кортекс . 4 (5): 455–69. дои : 10.1093/cercor/4.5.455. ПМИД  7833649.
  64. ^ abc Шиллер PH (1986). «Центральная зрительная система». Видение Рез . 26 (9): 1351–86. дои : 10.1016/0042-6989(86)90162-8. ISSN  0042-6989. PMID  3303663. S2CID  5247746.

дальнейшее чтение

Внешние ссылки