stringtranslate.com

Методология поверхности реагирования

Спланированные эксперименты с полным факторным планом (слева), поверхность отклика с полиномом второй степени (справа)

В статистике методология поверхности отклика ( RSM ) исследует взаимосвязи между несколькими объясняющими переменными и одной или несколькими переменными отклика . RSM — это эмпирическая модель, в которой используются математические и статистические методы для связи входных переменных, также известных как факторы, с ответом. RSM стал очень полезным из-за того, что другие доступные методы, такие как теоретическая модель, могли быть очень громоздкими в использовании, отнимающими много времени, неэффективными, подверженными ошибкам и ненадежными. Этот метод был представлен Джорджем Э.П. Боксом и К.Б. Уилсоном в 1951 году. Основная идея RSM заключается в использовании последовательности запланированных экспериментов для получения оптимального ответа. Бокс и Уилсон предлагают использовать для этого полиномиальную модель второй степени . Они признают, что эта модель является лишь приближением, но используют ее, потому что такую ​​модель легко оценить и применить, даже если о процессе мало что известно.

Статистические подходы, такие как RSM, можно использовать для максимизации производства специального вещества за счет оптимизации эксплуатационных факторов. В последнее время для оптимизации формулировок стал широко использоваться RSM с ​​использованием правильного планирования экспериментов ( DoE ). [1] В отличие от традиционных методов, взаимодействие между переменными процесса можно определить статистическими методами. [2]

Базовый подход методологии поверхности отклика

Простой способ оценить полиномиальную модель первой степени — использовать факторный эксперимент или дробный факторный план . Этого достаточно, чтобы определить, какие объясняющие переменные влияют на интересующую(ые) переменную(ые) отклика. Если есть подозрение, что остались только значимые объясняющие переменные, то можно реализовать более сложный план, такой как центральный составной план, для оценки полиномиальной модели второй степени, которая в лучшем случае остается лишь приближением. Однако модель второй степени можно использовать для оптимизации (максимизации, минимизации или достижения конкретной цели) интересующей переменной(-ов) отклика.

Важные свойства и особенности RSM

Ортогональность
Свойство, которое позволяет независимо оценивать отдельные эффекты k-факторов без (или с минимальным) искажений. Также ортогональность обеспечивает минимальные оценки дисперсии коэффициента модели, так что они не коррелируют.
Вращаемость
Свойство вращения точек конструкции вокруг центра факторного пространства. Моменты распределения расчетных точек постоянны.
Единообразие
Третьим свойством конструкций ПЗС, используемым для контроля количества центральных точек, является равномерная точность (или единообразие).

Специальная геометрия

Куб

Кубические конструкции обсуждаются Кифером, Аткинсоном, Доневым и Тобиасом, а также Хардином и Слоаном.

Сфера

Сферические конструкции обсуждаются Кифером, Хардином и Слоаном.

Симплексная геометрия и эксперименты по смесям

Эксперименты со смесями обсуждаются во многих книгах по планированию экспериментов , а также в учебниках по методологии поверхности отклика Бокса и Дрейпера, а также Аткинсона, Донева и Тобиаса. Подробное обсуждение и обзор представлены в продвинутом учебнике Джона Корнелла.

Расширения

Множественные целевые функции

Некоторые расширения методологии поверхности ответа касаются проблемы множественных ответов. Множественные переменные ответа создают трудности, поскольку то, что оптимально для одного ответа, может быть неоптимальным для других ответов. Другие расширения используются для уменьшения изменчивости одного ответа при нацеливании на определенное значение или достижении почти максимума или минимума, одновременно предотвращая слишком большое изменение этого ответа.

Практические проблемы

В методологии поверхности отклика используются статистические модели, и поэтому практикующие специалисты должны осознавать, что даже самая лучшая статистическая модель является приближением к реальности. На практике и модели, и значения параметров неизвестны и подвержены неопределенности в дополнение к незнанию. Конечно, предполагаемая оптимальная точка не обязательно должна быть оптимальной в действительности из-за ошибок оценок и неадекватности модели.

Тем не менее, методология поверхности отклика эффективно помогает исследователям улучшать продукты и услуги: например, оригинальное моделирование поверхности отклика Бокса позволило инженерам-химикам улучшить процесс, который годами застревал в седловой точке. Инженеры не могли позволить себе использовать кубическую трехуровневую конструкцию для оценки квадратичной модели, и их смещенные линейные модели оценивали градиент равным нулю. Конструкция Бокса снизила затраты на эксперименты, так что можно было использовать квадратичную модель, что привело к (давно искомому) направлению восхождения. [3] [4]

Смотрите также

Рекомендации

  1. ^ Кармокер, младший; Хасан, И.; Ахмед, Н.; Сайфуддин, М.; Реза, М.С. (2019). «Разработка и оптимизация мукоадгезивных микросфер, наполненных ацикловиром, с помощью Box-Behnken Design». Журнал фармацевтических наук Университета Дакки . 18 (1): 1–12. дои : 10.3329/dujps.v18i1.41421 .
  2. ^ Асади, Нушин; Зилоуэй, Хамид (март 2017 г.). «Оптимизация предварительной обработки рисовой соломы органосольвентными веществами для увеличения производства биоводорода с использованием Enterobacter aerogenes». Биоресурсные технологии . 227 : 335–344. doi :10.1016/j.biortech.2016.12.073. ПМИД  28042989.
  3. ^ Бокс и Уилсон, 1951 г.
  4. ^ Улучшение почти всего: идеи и эссе , исправленное издание (Серия Уайли по вероятности и статистике) Джордж EP Box

Исторический

Внешние ссылки