stringtranslate.com

Координатная ковалентная связь

В координационной химии координатная ковалентная связь , [1] также известная как дативная связь , [2] диполярная связь , [1] или координатная связь [3] представляет собой разновидность двухцентровой двухэлектронной ковалентной связи, в которой два электрона происходят от одного и того же атома . Соединение ионов металлов с лигандами предполагает именно такое взаимодействие. [4] Этот тип взаимодействия занимает центральное место в кислотно-основной теории Льюиса .

Координационные связи обычно встречаются в координационных соединениях . [5]

Примеры

Образование аддукта аммиака и трифторида бора , включающее образование координационной ковалентной связи .

Координатная ковалентная связь распространена повсеместно. [6] Во всех аквакомплексах металлов [M(H 2 O) n ] m + связь между водой и катионом металла описывается как координатная ковалентная связь. Аналогично описываются металл-лигандные взаимодействия в большинстве металлоорганических соединений и большинстве координационных соединений .

Термин «диполярная связь» используется в органической химии для таких соединений, как оксиды аминов , электронная структура которых может быть описана в терминах основного амина , отдающего два электрона атому кислорода.

р
3
Н
→ О

Стрелка → указывает, что оба электрона связи происходят от аминного фрагмента . В стандартной ковалентной связи каждый атом отдает один электрон. Следовательно, альтернативное описание состоит в том, что амин отдает один электрон атому кислорода, который затем используется вместе с оставшимся неспаренным электроном на атоме азота для образования стандартной ковалентной связи. Процесс передачи электрона от азота к кислороду создает формальные заряды , поэтому электронную структуру можно также изобразить как

р
3
Н+
О
Хлорид гексамминкобальта(III)

Эта электронная структура имеет электрический диполь , отсюда и название полярной связи. В действительности атомы несут частичные заряды ; более электроотрицательный атом из двух, участвующих в связи, обычно несет частичный отрицательный заряд. Единственным исключением из этого правила является окись углерода . В этом случае атом углерода несет частичный отрицательный заряд, хотя он менее электроотрицательен, чем кислород.

Примером дативной ковалентной связи является взаимодействие между молекулой аммиака , основанием Льюиса с неподеленной парой электронов на атоме азота, и трифторидом бора , кислотой Льюиса , поскольку атом бора имеет неполный октет электроны. При образовании аддукта атом бора приобретает октетную конфигурацию.

Электронную структуру координационного комплекса можно описать набором лигандов , каждый из которых отдает пару электронов металлическому центру. Например, в хлориде гексамминкобальта(III) каждый аммиачный лиганд отдает свою неподеленную пару электронов иону кобальта(III). В этом случае образующиеся связи называются координатными.

Сравнение с другими режимами обмена электронами

Во всех случаях связь, будь то дативная или «нормальная» с общим электроном, является ковалентной связью. В обычном использовании префикс диполярный, дательный или координатный просто служит для указания происхождения электронов, используемых при создании связи. Например, F 3 B ← O(C 2 H 5 ) 2(диэтил)эфират трифторида бора ») получают из BF 3 и : O(C 2 H 5 ) 2 , в отличие от радикальной разновидности [•BF 3 ] и [•O(C 2 H 5 ) 2 ] + . Дательная связь также удобна с точки зрения обозначений, поскольку позволяет избежать формальных обвинений: мы можем написать D : + ()A ⇌ D → A, а не D + –A (здесь : и () обозначают неподеленную пару и пустая орбиталь донора электронной пары D и акцептора A соответственно). Это обозначение иногда используется даже тогда, когда рассматриваемая кислотно-основная реакция Льюиса является лишь условной (например, сульфоксид R 2 S → O редко, если вообще когда-либо, образуется путем реакции сульфида R 2 S с атомарным кислородом O). Таким образом, большинство химиков не делают никаких заявлений относительно свойств связи при выборе одного обозначения вместо другого (формальные заряды вместо стрелочной связи).

Однако в целом верно, что связи, изображенные таким образом, являются полярно-ковалентными, иногда сильно, и некоторые авторы утверждают, что существуют реальные различия в свойствах дативной связи и связи с общим электроном, и предполагают, что показывать дативную связь более уместно в конкретных ситуациях. Еще в 1989 году Хааланд охарактеризовал дативные облигации как облигации, которые (i) являются слабыми и длинными; (ii) при образовании связи происходит лишь небольшая степень переноса заряда; и (iii) предпочтительный способ диссоциации которого в газовой фазе (или инертном растворителе с низким ε) является гетеролитическим, а не гомолитическим. [7] В качестве классического примера приведен аммиачно-борановый аддукт (H 3 N → BH 3 ): связь слабая, с энергией диссоциации 31 ккал/моль (ср. 90 ккал/моль для этана), и длительная , в 166 пм (ср. 153 пм для этана), а молекула обладает дипольным моментом 5,2 Д, что предполагает передачу всего 0,2 е от азота к бору. По оценкам , гетеролитическая диссоциация H 3 N → BH 3 требует 27 ккал/моль, что подтверждает, что гетеролиз с образованием аммиака и борана более выгоден, чем гомолиз с образованием катион-радикала и анион-радикала. Однако, помимо четких примеров, существуют серьезные споры относительно того, когда квалифицируется конкретное соединение и, следовательно, об общей распространенности дативной связи (по отношению к предпочтительному определению автора). Химики-вычислители предложили количественные критерии, позволяющие различать два «типа» связей. [8] [9] [10]

Некоторые неочевидные примеры, когда дативная связь считается важной, включают субоксид углерода (O≡C → C 0 ← C≡O), тетрааминоаллены (описываемые на языке дативной связи как «карбодикарбены»; (R 2 N) 2 C → C 0 ← C(NR 2 ) 2 ), карбодифосфоран Рамиреса (Ph 3 P → C 0 ← PPh 3 ) и катион бис(трифенилфосфин)иминия (Ph 3 P → N + ← PPh 3 ), все из которых демонстрируют значительную изогнутость. равновесные геометрии, хотя и с неглубоким барьером для изгиба. Простое применение обычных правил рисования структур Льюиса путем максимизации связей (с использованием связей с общим электроном) и минимизации формальных зарядов могло бы предсказать гетерокумуленовые структуры и, следовательно, линейную геометрию для каждого из этих соединений. Таким образом, утверждается, что эти молекулы лучше моделируются как координационные комплексы : C : (углерод(0) или карбон ) или : N : + (катион моноазота) с CO, PPh 3 или N- гетероциклическими карбенами в качестве лигандов, одиноких пары на центральном атоме, отвечающие за изогнутую геометрию. Однако полезность этой точки зрения оспаривается. [9] [10]

Рекомендации

  1. ^ ab IUPAC , Сборник химической терминологии , 2-е изд. («Золотая книга») (1997). Исправленная онлайн-версия: (2006–) «диполярная связь». дои :10.1351/goldbook.D01752
  2. ^ ИЮПАК , Сборник химической терминологии , 2-е изд. («Золотая книга») (1997). Исправленная онлайн-версия: (2006–) «дательная связь». дои :10.1351/goldbook.D01523
  3. ^ ИЮПАК , Сборник химической терминологии , 2-е изд. («Золотая книга») (1997). Исправленная онлайн-версия: (2006–) «координатная связь». дои :10.1351/goldbook.C01329
  4. ^ Арияратна, Исуру (март 2021 г.). Первые принципиальные исследования основных и возбужденных электронных состояний: химическая связь в молекулах основной группы, молекулярные системы с диффузными электронами и активация воды с использованием монооксидов переходных металлов.
  5. ^ Харе, Э.; Холтен-Андерсен, Н.; Бюлер, MJ (2021). «Координационные связи переходных металлов для биоинспирированных макромолекул с настраиваемыми механическими свойствами». Nat Rev Mater . 6 : 421–436. дои : 10.1038/s41578-020-00270-z.
  6. ^ Гринвуд, Норман Н .; Эрншоу, Алан (1997). Химия элементов (2-е изд.). Баттерворт-Хайнеманн . ISBN 978-0-08-037941-8.
  7. ^ Хааланд, Арне (1989). «Ковалентные и дативные связи с металлами основной группы, полезное различие». Angewandte Chemie International Edition на английском языке . 28 (8): 992–1007. дои : 10.1002/anie.198909921. ISSN  0570-0833.
  8. ^ Химмель, Дэниел; Кроссинг, Инго; Шнепф, Андреас (07 января 2014 г.). «Дативные связи в соединениях главной группы: аргумент в пользу меньшего количества стрел!». Angewandte Chemie, международное издание . 53 (2): 370–374. дои : 10.1002/anie.201300461. ПМИД  24243854.
  9. ^ аб Френкинг, Гернот (10 июня 2014 г.). «Дативные связи в соединениях главной группы: аргумент в пользу большего количества стрел!». Angewandte Chemie, международное издание . 53 (24): 6040–6046. дои : 10.1002/anie.201311022. ПМИД  24849466.
  10. ^ аб Шмидбаур, Хуберт; Шир, Аннет (2 января 2013 г.). «Координационная химия углерода: лоскутное семейство, включающее (Ph 3 P) 2 C, (Ph 3 P) C (C 2 H 4 ) и (C 2 H 4 ) 2 C». Angewandte Chemie, международное издание . 52 (1): 176–186. дои : 10.1002/anie.201205294. ПМИД  23203500.