stringtranslate.com

Изотопы никеля

Встречающийся в природе никель ( 28 Ni) состоит из пяти стабильных изотопов ;58
Ни
,60
Ни
,61
Ни
,62Нии64
Ни
, с58
Ни
является самым многочисленным (68,077% естественной численности ). [4] Охарактеризовано 26 радиоизотопов , наиболее стабильным из которых является59
Ни
с периодом полураспада 76 000 лет,63
Ни
с периодом полураспада 100,1 года, и56
Ни
с периодом полураспада 6,077 дней. Период полураспада всех остальных радиоактивных изотопов составляет менее 60 часов, а период полураспада большинства из них составляет менее 30 секунд. Этот элемент также имеет 8 метасостояний .

Список изотопов

  1. ^ м Ni – Возбужденный ядерный изомер .
  2. ^ ( ) – Неопределенность (1 σ ) указывается в краткой форме в скобках после соответствующих последних цифр.
  3. ^ # - Атомная масса, отмеченная #: значение и неопределенность получены не на основе чисто экспериментальных данных, но, по крайней мере, частично на основе трендов поверхности массы (TMS).
  4. ^ ab # - Значения, отмеченные #, получены не только на основе экспериментальных данных, но, по крайней мере, частично на основе тенденций соседних нуклидов (TNN).
  5. ^ Способы распада:
  6. ^ Жирный символ в виде дочернего продукта — дочерний продукт стабилен.
  7. ^ ( ) значение вращения — указывает на вращение со слабыми аргументами присваивания.
  8. ^ Предполагается, что распадается на β + β + до 58 Fe с периодом полураспада более 1,7 × 10 22 года.
  9. ^ Самая высокая энергия связи на нуклон среди всех нуклидов.

Известные изотопы

Атомный вес 5 стабильных и 30 нестабильных изотопов никеля варьируется от48
Ни
к82
Ни
и включают: [6]

Никель-48 , открытый в 1999 году, является самым бедным нейтронами изотопом никеля из известных. С 28 протонами и 20 нейтронами 48
Ни
это " двойное волшебство " (как208
Pb
) и, следовательно, гораздо более стабильным (с нижним пределом периода полураспада 0,5 мкс), чем можно было бы ожидать, исходя из его положения в таблице нуклидов. [7] Он имеет самое высокое соотношение протонов к нейтронам (избыток протонов) среди всех известных дважды магических нуклидов. [8]

Никель-56 производится в больших количествах в сверхновых , и форма кривой блеска этих сверхновых отображает характерные временные рамки, соответствующие распаду никеля-56 на кобальт -56, а затем на железо-56 .

Никель-58 является наиболее распространенным изотопом никеля, его доля составляет 68,077% от его естественного содержания . Возможные источники включают захват электронов от меди-58 и EC + p от цинка-59 .

Никель-59 — долгоживущий космогенный радионуклид с периодом полураспада 76 000 лет.59
Ни
нашел множество применений в изотопной геологии .59
Ни
использовался для определения земного возраста метеоритов и определения содержания внеземной пыли во льду и отложениях .

Никель-60 — дочерний продукт вымершего радионуклида. 60Фе(период полураспада = 2,6 млн). Потому что60
Фе
имел такой длительный период полураспада, его сохранение в материалах Солнечной системы при достаточно высоких концентрациях могло вызвать наблюдаемые изменения в изотопном составе.60
Ни
. Поэтому обилие60
Ни
присутствующие во внеземном материале, могут дать представление о происхождении Солнечной системы и ее ранней/очень ранней истории. К сожалению, изотопы никеля, по-видимому, были распределены в ранней Солнечной системе неоднородно. Таким образом, до сих пор никакой фактической информации о возрасте получено не было.60
Ни
излишества.60
Ни
также является стабильным конечным продуктом распада60
Зн
, продукт последней ступени альфа-лестницы. Другие источники могут также включать бета-распад кобальта -60 и захват электронов меди-60 .

Никель-61 — единственный стабильный изотоп никеля с ядерным спином (I = 3/2), что делает его полезным для исследований методом ЭПР-спектроскопии . [9]

Никель-62 имеет самую высокую энергию связи на нуклон среди всех изотопов любого элемента, если учитывать электронную оболочку в расчете. При образовании этого изотопа выделяется больше энергии, чем при образовании любого другого, хотя в результате синтеза могут образовываться более тяжелые изотопы. Например, два40
Калифорния
атомы могут сливаться, образуя80Крплюс 4 позитрона (плюс 4 нейтрино), выделяя 77 кэВ на нуклон, но реакции, ведущие к области железа/никеля, более вероятны, поскольку они выделяют больше энергии на барион.

Никель-63 имеет два основных применения: обнаружение следов взрывчатых веществ и в некоторых видах электронных устройств, таких как газоразрядные трубки, используемые в качестве устройств защиты от перенапряжений . Сетевой фильтр — это устройство, которое защищает чувствительное электронное оборудование, такое как компьютеры, от внезапных изменений протекающего в них электрического тока. Он также используется в детекторе электронного захвата в газовой хроматографии для обнаружения в основном галогенов. Его предлагается использовать для миниатюрных бетавольтаических генераторов для кардиостимуляторов.

Никель-64 — еще один стабильный изотоп никеля. Возможные источники включают бета-распад кобальта -64 и захват электронов меди-64 .

Никель-78 — один из самых тяжелых известных изотопов элемента. Имея 28 протонов и 50 нейтронов, никель-78 обладает двойной магией, что приводит к гораздо большей энергии ядерной связи и стабильности, несмотря на однобокое соотношение нейтрон-протонов . Период полураспада составляет 122 ± 5,1 миллисекунды. [10] Считается, что благодаря своему магическому числу нейтронов никель-78 принимает важное участие в нуклеосинтезе сверхновых элементов тяжелее железа. [11] Считается, что 78 Ni, наряду с N = 50 изотонами 79 Cu и 80 Zn, представляет собой точку ожидания в r -процессе , где дальнейший захват нейтронов задерживается из-за зазора оболочки и накопления изотопов вокруг A = 80. Результаты. [12]

Рекомендации

  1. ^ Кондев, ФГ; Ван, М.; Хуанг, WJ; Наими, С.; Ауди, Г. (2021). «Оценка ядерных свойств NUBASE2020» (PDF) . Китайская физика C . 45 (3): 030001. doi :10.1088/1674-1137/abddae.
  2. ^ «Стандартный атомный вес: никель». ЦИАВ . 2007.
  3. ^ Прохаска, Томас; Ирргехер, Йоханна; Бенефилд, Жаклин; и другие. (4 мая 2022 г.). «Стандартные атомные веса элементов 2021 (Технический отчет ИЮПАК)». Чистая и прикладная химия . doi : 10.1515/pac-2019-0603. ISSN  1365-3075.
  4. ^ «Изотопы элемента никеля». Научное образование . Джефферсонская лаборатория.
  5. ^ И. Гресиц; С. Тёлгеси (сентябрь 2003 г.). «Определение мягких рентгеновских изотопов в жидких радиоактивных отходах атомных электростанций». Журнал радиоаналитической и ядерной химии . 258 (1): 107–112. дои : 10.1023/А: 1026214310645. S2CID  93334310.
  6. ^ «Новые нуклиды впервые включены в оценку 2017 года» (PDF) . Проект открытия нуклидов. 22 декабря 2018 года . Проверено 22 мая 2018 г.
  7. ^ «Открытие дважды волшебного никеля». ЦЕРН Курьер . 15 марта 2000 г. Проверено 2 апреля 2013 г.
  8. ^ «Дважды волшебный металл дебютирует | Новости науки | Найти статьи» . Архивировано из оригинала 24 мая 2012 года.
  9. ^ Морис ван Гастель; Вольфганг Любиц (2009). «ЭПР-исследование гидрогеназ [NiFe]». В Грэме Хэнсоне; Лоуренс Берлинер (ред.). ЭПР высокого разрешения: применение металлоферментов и металлов в медицине . Дордрехт: Спрингер. стр. 441–470. ISBN 9780387848563.
  10. ^ Базен, Д. (2017). «Точка зрения: двойной магический никель». Физика . 10 (121): 121. doi : 10.1103/Physics.10.121 .
  11. Давиде Кастельвекки (22 апреля 2005 г.). «Атомные крушители проливают свет на сверхновые и Большой взрыв». Небо и телескоп .
  12. ^ Перейра, Дж.; Апраамян А.; Арндт, О.; Бесеррил, А.; Эллиот, Т.; Эстрада, А.; Галавиз Д.; Генрих, С.; Хосмер, П.; Кесслер, Р.; Крац, К.-Л.; Лоруссо, Г.; Мантика, ПФ; Матос, М.; Монтес, Ф.; Санти, П.; Пфайффер, Б.; Куинн, М.; Шац, Х.; Шерц, Ф.; Шнорренбергер, Л.; Смит, Э.; Томлин, Бельгия; Уолтерс, В.; Вёр, А. (2009). Исследования бета-распада ядер r-процесса в Национальной сверхпроводниковой циклотронной лаборатории . 10-й симпозиум по ядрам в космосе . Остров Макино. arXiv : 0901.1802 .