stringtranslate.com

Обратные гиперболические функции

Графики обратных гиперболических функций
Гиперболические функции sinh , cosh и tanh относительно единичной гиперболы аналогичны круговым функциям sin , cos , tan относительно единичной окружности. Аргументом гиперболических функций является гиперболическая угловая мера.

В математике обратные гиперболические функции являются обратными гиперболическими функциями , аналогичными обратным круговым функциям . Обычно используются шесть: обратный гиперболический синус, обратный гиперболический косинус, обратный гиперболический тангенс, обратный гиперболический косеканс, обратный гиперболический секанс и обратный гиперболический котангенс. Их обычно обозначают символами гиперболических функций с префиксом arc- или ar- .

Для данного значения гиперболической функции обратная гиперболическая функция обеспечивает соответствующую меру гиперболического угла , например, а мера гиперболического угла — это длина дуги единичной гиперболы , измеренная в лоренцевой плоскости ( а не длина гиперболической дуги). в евклидовой плоскости ), и вдвое больше площади соответствующего гиперболического сектора . Это аналогично тому, как мерой кругового угла является длина дуги единичной окружности в евклидовой плоскости или удвоенная площадь соответствующего кругового сектора . Альтернативно гиперболический угол — это площадь сектора гиперболы. Некоторые авторы называют обратные гиперболические функции гиперболическими функциями площади . [1]

Гиперболические функции встречаются при вычислении углов и расстояний в гиперболической геометрии . Это также происходит в решениях многих линейных дифференциальных уравнений (таких как уравнение, определяющее цепную линию ), кубических уравнений и уравнения Лапласа в декартовых координатах . Уравнения Лапласа важны во многих областях физики , включая теорию электромагнетизма , теплообмен , гидродинамику и специальную теорию относительности .

Обозначения

Луч, проходящий через единичную гиперболу в точке , где — удвоенная площадь между лучом, гиперболой и -осью.

Самые ранние и наиболее широко распространенные символы используют префикс arc- (то есть: arcsinh , arccosh , arctanh , arcsech , arccsch , arccoth ), по аналогии с обратными круговыми функциями ( arcsin и т. д.). Для единичной гиперболы («лоренцев круг») в лоренцевой плоскости ( псевклидовой плоскости сигнатуры ( 1, 1) ) [2] или в гиперболической числовой плоскости [3] гиперболическая угловая мера (аргумент гиперболических функций ) действительно является длиной гиперболической дуги.

Также распространены обозначения и т. д., [4] [5], хотя необходимо проявлять осторожность, чтобы избежать неправильной интерпретации верхнего индекса -1 как показателя степени. Стандартное соглашение заключается в том, что или означает обратную функцию, в то время как или означает обратную функцию . Особенно непоследовательным является обычное использование верхних индексов положительных целых чисел для обозначения показателя степени, а не композиции функций, например, условно означает , а не

Поскольку аргументом гиперболических функций не является длина гиперболической дуги в евклидовой плоскости , некоторые авторы осудили префикс дуга- , утверждая, что префикс ar- (для площади ) или arg- (для аргумента ) должен быть предпочтительнее. [6] Следуя этой рекомендации, стандартные сокращения ISO 80000-2 используют префикс ar- (то есть: arsinh , arcosh , artanh , arsech , arcsch , arcoth ).

В языках программирования обратные круговые и гиперболические функции часто называются с более коротким префиксом a- ( asinh и т. д.).

В этой статье для удобства будет последовательно использоваться префикс ar- .

Определения в терминах логарифмов

Поскольку гиперболические функции являются квадратично- рациональными функциями показательной функции, их можно решить с помощью квадратичной формулы , а затем записать в терминах натурального логарифма .

Для комплексных аргументов обратные круговые и гиперболические функции, квадратный корень и натуральный логарифм являются многозначными функциями .

Формулы сложения

Другие личности

Композиция гиперболических и обратных гиперболических функций

Композиция обратных гиперболических и круговых функций

[7]

Конверсии

Производные

Эти формулы можно вывести через производные гиперболических функций. Например, если , то так

Расширения серии

Для вышеуказанных функций можно получить ряд расширения:

Асимптотическое разложение для арсинха имеет вид


Основные значения в комплексной плоскости

Как функции комплексной переменной , обратные гиперболические функции являются многозначными функциями , которые являются аналитическими , за исключением конечного числа точек. Для такой функции обычно определяют главное значение , которое представляет собой однозначную аналитическую функцию, совпадающую с одной конкретной ветвью многозначной функции, в области, состоящей из комплексной плоскости , в которой конечное число дуг (обычно половина линии или сегменты линий ) были удалены. Эти дуги называются разрезами ветвей . Для указания ветви, то есть определения того, какое значение многозначной функции рассматривается в каждой точке, обычно определяют ее в конкретной точке и выводят значение всюду в области определения главного значения путем аналитического продолжения . Когда это возможно, лучше определить главное значение напрямую, не обращаясь к аналитическому продолжению.

Например, для квадратного корня главное значение определяется как квадратный корень, имеющий положительную действительную часть . Это определяет однозначную аналитическую функцию, которая определена везде, за исключением неположительных действительных значений переменных (где два квадратных корня имеют нулевую действительную часть). Это главное значение функции квадратного корня обозначается ниже. Аналогично, главное значение логарифма, обозначаемое далее, определяется как значение, при котором мнимая часть имеет наименьшее абсолютное значение. Он определен везде, кроме неположительных действительных значений переменной, для которых два разных значения логарифма достигают минимума.

Для всех обратных гиперболических функций главное значение может быть определено через главные значения квадратного корня и функции логарифма. Однако в некоторых случаях формулы § Определения в терминах логарифмов не дают правильного главного значения, поскольку дают слишком маленькую область определения и, в одном случае, несвязную .

Главное значение обратного гиперболического синуса

Главное значение обратного гиперболического синуса определяется выражением

Аргумент квадратного корня является неположительным действительным числом тогда и только тогда, когда z принадлежит одному из интервалов [ i , + i ∞) и (− i ∞, − i ] мнимой оси. логарифм веществен, то он положителен. Таким образом, эта формула определяет главное значение для arsinh с разрезами ветвей [ i , + i ∞) и (− i ∞, − i ] . Это оптимально, так как разрезы ветвей должны соединять особые точки i и i до бесконечности.

Главное значение обратного гиперболического косинуса

Формула для обратного гиперболического косинуса, приведенная в § Обратный гиперболический косинус, неудобна, поскольку, как и в случае с главными значениями логарифма и квадратного корня, главное значение arcosh не будет определено для мнимого z . Таким образом, квадратный корень должен быть факторизован, что приводит к

Оба главных значения квадратных корней определены, за исключением случаев, когда z принадлежит вещественному интервалу (−∞, 1] . Если аргумент логарифма веществен, то z веществен и имеет тот же знак. Таким образом, приведенная выше формула определяет главное значение arcosh вне вещественного интервала (−∞, 1] , который, таким образом, является уникальным разрезом ветвления.

Основные значения обратного гиперболического тангенса и котангенса

Формулы, приведенные в § Определения в логарифмах, предполагают

для определения главных значений обратного гиперболического тангенса и котангенса. В этих формулах аргумент логарифма действителен тогда и только тогда, когда z действительно. Для artanh этот аргумент находится в вещественном интервале (−∞, 0] , если z принадлежит либо (−∞, −1] либо [1, ∞) . Для arcoth аргумент логарифма находится в (−∞ , 0] тогда и только тогда, когда z принадлежит вещественному интервалу [−1, 1] .

Следовательно, эти формулы определяют удобные главные значения, для которых разрезами ветвей являются (−∞, −1] и [1, ∞) для обратного гиперболического тангенса и [−1, 1] для обратного гиперболического котангенса.

Ввиду лучшей численной оценки вблизи разрезов ветвей некоторые авторы [ нужна ссылка ] используют следующие определения главных значений, хотя второе вводит устранимую особенность при z = 0 . Два определения различаются для реальных значений с . Те из них отличаются для реальных значений с .

Главное значение обратного гиперболического косеканса

Для обратного гиперболического косеканса главное значение определяется как

.

Он определен, за исключением случаев, когда аргументы логарифма и квадратного корня являются неположительными действительными числами. Таким образом, главное значение квадратного корня определяется вне интервала [− i , i ] воображаемой прямой. Если аргумент логарифма вещественный, то z — ненулевое действительное число, а это означает, что аргумент логарифма положителен.

Таким образом, главное значение определяется приведенной выше формулой вне разреза ветвления , состоящего из интервала [− i , i ] мнимой прямой.

(При z = 0 существует особая точка, которая входит в разрез ветвления.)

Главное значение обратного гиперболического секанса

Здесь, как и в случае с обратным гиперболическим косинусом, нам необходимо факторизовать квадратный корень. Это дает главное значение

Если аргумент квадратного корня действителен, то z действителен, и отсюда следует, что оба главных значения квадратных корней определены, за исключением случаев, когда z действителен и принадлежит одному из интервалов (−∞, 0] и [1, +∞) . Если аргумент логарифма вещественный и отрицательный, то z также вещественный и отрицательный. Отсюда следует, что главное значение arsech корректно определяется приведенной выше формулой вне двух разрезов ветвей , вещественных интервалов (−∞, 0] и [1, +∞) .

При z = 0 существует особая точка, входящая в один из разрезов ветвления.

Графическое представление

В следующем графическом представлении главных значений обратных гиперболических функций разрезы ветвей выглядят как разрывы цвета. Тот факт, что все разрезы ветвей выглядят как разрывы, показывает, что эти главные значения нельзя расширить до аналитических функций, определенных в более крупных областях. Другими словами, определенные выше разрезы ветвей минимальны.

Обратные гиперболические функции в комплексной плоскости z: цвет в каждой точке плоскости представляет комплексное значение соответствующей функции в этой точке.

Смотрите также

Рекомендации

  1. ^ Например:
    Вельтнер, Клаус; и другие. (2014) [2009]. Математика для физиков и инженеров (2-е изд.). Спрингер. ISBN 978-364254124-7.
    Дуран, Марио (2012). Математические методы распространения волн в науке и технике . Том. 1. Эдиционес UC. п. 89. ИСБН 9789561413146.
  2. ^ Бирман, Грасиела С.; Номидзу, Кацуми (1984). «Тригонометрия в лоренцевой геометрии». Американский математический ежемесячник . 91 (9): 543–549. JSTOR  2323737.
  3. ^ Собчик, Гаррет (1995). «Гиперболическая числовая плоскость». Математический журнал колледжа . 26 (4): 268–280.
  4. ^ Вайсштейн, Эрик В. «Обратные гиперболические функции». Вольфрам Математический мир . Проверено 30 августа 2020 г.
    «Обратные гиперболические функции». Энциклопедия математики . Проверено 30 августа 2020 г.
  5. ^ Пресс, WH; Теукольский, С.А.; Феттерлинг, WT; Фланнери, BP (1992). «§ 5.6. Квадратные и кубические уравнения». Числовые рецепты на ФОРТРАНЕ (2-е изд.). Издательство Кембриджского университета. ISBN 0-521-43064-Х.
    Вудхаус, Нью-Джерси (2003). Специальная теория относительности . Спрингер. п. 71. ИСБН 1-85233-426-6.
  6. ^ Галлберг, январь (1997). Математика: от рождения чисел . WW Нортон. п. 539. ИСБН 039304002X. Другая форма записи, arcsinh x , arccosh x и т. д., является практикой, которую следует осудить, поскольку эти функции не имеют ничего общего с arc , а имеют площадь ea, о чем свидетельствуют их полные латинские названия, ¶ arsinh   area sinus Hyperbolicus.arcosh   area cosinus Hyperbolicus и т. д.
    Зейдлер, Эберхард ; Хакбуш, Вольфганг ; Шварц, Ганс Рудольф (2004). «§ 0.2.13 Обратные гиперболические функции». Оксфордское руководство пользователя по математике . Перевод Ханта, Брюса. Издательство Оксфордского университета. п. 68. ИСБН 0198507631. Латинские названия обратных гиперболических функций: площадь синуса гиперболическая , площадь косинуса гиперболическая , площадь касательной гиперболическая и площадь котангенса гиперболическая ( х )..
    Зейдлер и др. используйте обозначения арсинх и т. д.; Обратите внимание, что цитируемые латинские названия представляют собой обратные образования , изобретенные спустя много времени после того, как неолатинский язык перестал широко использоваться в математической литературе.
    Бронштейн Илья Н. ; Семендяев Константин А. ; Мусиоль, Герхард; Хайнер, Мюлиг (2007). «§ 2.10: Функции площади». Справочник по математике (5-е изд.). Спрингер. п. 91. дои : 10.1007/978-3-540-72122-2. ISBN 3540721215. Функции площади являются обратными функциями гиперболических функций, т. е. обратными гиперболическими функциями . Функции sinh x , tanh x и coth x строго монотонны, поэтому они имеют уникальные обратные без каких-либо ограничений; функция ch x имеет два монотонных интервала, поэтому мы можем рассмотреть две обратные функции. Название « площадь» связано с тем, что геометрическим определением функции является площадь определенных гиперболических секторов...
    Бэкон, Гарольд Мэйл (1942). Дифференциальное и интегральное исчисление. МакГроу-Хилл. п. 203.
  7. ^ «Тождества с обратными гиперболическими и тригонометрическими функциями». математический стек обмена . стекобмен . Проверено 3 ноября 2016 г.

Библиография

Внешние ссылки