В области физики , техники и наук о Земле адвекция — это перенос вещества или количества посредством объемного движения жидкости. Свойства этого вещества переносятся вместе с ним. Обычно большая часть адвектируемого вещества также является жидкостью. Свойства, которые переносятся с адвектируемым веществом, являются сохраняющимися свойствами, такими как энергия . Примером адвекции является перенос загрязняющих веществ или ила в реке объемным потоком воды вниз по течению. Другой часто адвектируемой величиной является энергия или энтальпия . Здесь жидкостью может быть любой материал, содержащий тепловую энергию, такой как вода или воздух . В общем, любое вещество или сохраняющееся, обширное количество может быть адвектировано жидкостью , которая может удерживать или содержать это количество или вещество.
Во время адвекции жидкость переносит некоторое сохраняющееся количество или материал посредством объемного движения. Движение жидкости математически описывается как векторное поле , а переносимый материал описывается скалярным полем, показывающим его распределение в пространстве. Адвекция требует токов в жидкости и поэтому не может происходить в твердых телах. Она не включает перенос веществ путем молекулярной диффузии .
Адвекцию иногда путают с более обширным процессом конвекции , который представляет собой комбинацию адвективного переноса и диффузионного переноса.
В метеорологии и физической океанографии адвекция часто относится к переносу некоторых свойств атмосферы или океана , таких как тепло , влажность (см. влажность ) или соленость . Адвекция важна для формирования орографических облаков и осаждения воды из облаков, как части гидрологического цикла .
Уравнение переноса — это гиперболическое уравнение в частных производных первого порядка , которое описывает движение сохраняющегося скалярного поля , переносимого известным векторным полем скорости . [1] Оно выводится с использованием закона сохранения скалярного поля вместе с теоремой Гаусса и с учетом предела бесконечно малых .
Одним из легко визуализируемых примеров адвекции является транспортировка чернил, сброшенных в реку. По мере течения реки чернила будут перемещаться вниз по течению в «импульсе» посредством адвекции, поскольку само движение воды переносит чернила. Если их добавить в озеро без значительного потока воды, чернила просто рассеются от источника диффузионным образом , что не является адвекцией. Обратите внимание, что по мере движения вниз по течению «импульс» чернил также будет распространяться посредством диффузии. Сумма этих процессов называется конвекцией .
Уравнение адвекции для сохраняющейся величины, описываемой скалярным полем, выражается уравнением непрерывности : где векторное поле — это скорость потока , а — оператор del . [примечание 1] Если поток предполагается несжимаемым, то он является соленоидальным , то есть дивергенция равна нулю: и приведенное выше уравнение сводится к
В частности, если поток стационарный , то [2] что показывает, что является постоянным вдоль линии тока .
Если векторная величина (например, магнитное поле ) переносится соленоидальным полем скорости , то приведенное выше уравнение переноса принимает вид:
Здесь — векторное поле вместо скалярного .
Решения уравнения адвекции могут быть аппроксимированы с использованием численных методов , где интерес обычно сосредоточен на разрывных «ударных» решениях и необходимых условиях для сходимости (например, условие CFL ). [3]
Численное моделирование может быть упрощено путем рассмотрения кососимметричной формы адвекции , где
Поскольку косая симметрия подразумевает только мнимые собственные значения , эта форма уменьшает «взрыв» и «спектральную блокировку», часто наблюдаемые в численных решениях с резкими разрывами. [4]
Термин адвекция часто служит синонимом конвекции , и это соответствие терминов используется в литературе. Более технически, конвекция относится к движению жидкости (часто из-за градиентов плотности, создаваемых термическими градиентами), тогда как адвекция — это движение некоторого материала со скоростью жидкости. Таким образом, хотя это может показаться запутанным, технически правильно думать, что импульс переносится полем скорости в уравнениях Навье-Стокса, хотя результирующее движение будет считаться конвекцией. Из-за специфического использования термина конвекция для обозначения переноса в связи с термическими градиентами, вероятно, безопаснее использовать термин адвекция, если вы не уверены, какая терминология лучше всего описывает вашу конкретную систему.
В метеорологии и физической океанографии адвекция часто относится к горизонтальному переносу некоторого свойства атмосферы или океана , такого как тепло , влажность или соленость, а конвекция обычно относится к вертикальному переносу (вертикальная адвекция). Адвекция важна для формирования орографических облаков (конвекция, вызванная рельефом местности) и выпадения осадков из облаков, как части гидрологического цикла .
Уравнение адвекции также применимо, если переносимое количество представлено функцией плотности вероятности в каждой точке, хотя учет диффузии более сложен. [ необходима ссылка ]