stringtranslate.com

Радионуклид

Радионуклид ( радиоактивный нуклид , радиоизотоп или радиоактивный изотоп ) — это нуклид , который имеет избыточное количество нейтронов или протонов , что дает ему избыточную ядерную энергию и делает его нестабильным. Эта избыточная энергия может быть использована одним из трех способов: испущена из ядра в виде гамма-излучения ; передана одному из его электронов для высвобождения его в качестве конверсионного электрона ; или использована для создания и испускания новой частицы ( альфа-частицы или бета-частицы ) из ядра. Во время этих процессов радионуклид, как говорят, подвергается радиоактивному распаду . [1] Эти выбросы считаются ионизирующим излучением , потому что они достаточно энергичны, чтобы освободить электрон из другого атома. Радиоактивный распад может производить стабильный нуклид или иногда будет производить новый нестабильный радионуклид, который может подвергаться дальнейшему распаду. Радиоактивный распад — это случайный процесс на уровне отдельных атомов: невозможно предсказать, когда распадется один конкретный атом. [2] [3] [4] [5] Однако для набора атомов одного нуклида скорость распада и, следовательно, период полураспада ( t 1/2 ) для этого набора можно рассчитать из их измеренных констант распада . Диапазон периодов полураспада радиоактивных атомов не имеет известных пределов и охватывает временной диапазон более 55 порядков величины.

Радионуклиды встречаются в природе или искусственно производятся в ядерных реакторах , циклотронах , ускорителях частиц или генераторах радионуклидов . Существует около 730 радионуклидов с периодом полураспада более 60 минут (см. список нуклидов ). Тридцать два из них являются первичными радионуклидами , которые были созданы до образования Земли. По крайней мере еще 60 радионуклидов обнаруживаются в природе, либо как дочерние продукты первичных радионуклидов, либо как радионуклиды, полученные в результате естественного производства на Земле под действием космического излучения. Более 2400 радионуклидов имеют период полураспада менее 60 минут. Большинство из них производятся только искусственно и имеют очень короткие периоды полураспада. Для сравнения, существует около 251 стабильного нуклида .

Все химические элементы могут существовать в виде радионуклидов. Даже самый легкий элемент, водород , имеет хорошо известный радионуклид, тритий . Элементы тяжелее свинца , а также элементы технеций и прометий существуют только в виде радионуклидов.

Незапланированное воздействие радионуклидов, как правило, оказывает вредное воздействие на живые организмы, включая людей, хотя низкие уровни воздействия происходят естественным образом без вреда. Степень вреда будет зависеть от природы и степени производимого излучения, количества и характера воздействия (тесный контакт, вдыхание или проглатывание) и биохимических свойств элемента; наиболее обычным последствием является повышенный риск рака. Однако радионуклиды с подходящими свойствами используются в ядерной медицине как для диагностики, так и для лечения. Индикатор визуализации, изготовленный с использованием радионуклидов, называется радиоактивным индикатором . Фармацевтический препарат, изготовленный с использованием радионуклидов, называется радиофармацевтическим препаратом .

Источник

Естественный

На Земле естественные радионуклиды делятся на три категории: первичные радионуклиды, вторичные радионуклиды и космогенные радионуклиды.

Многие из этих радионуклидов существуют только в следовых количествах в природе, включая все космогенные нуклиды. Вторичные радионуклиды будут встречаться пропорционально их периодам полураспада, поэтому короткоживущие будут очень редки. Например, полоний можно найти в урановых рудах в количестве около 0,1 мг на метрическую тонну (1 часть на 10 10 ). [7] [8] Другие радионуклиды могут встречаться в природе в практически необнаружимых количествах в результате редких событий, таких как спонтанное деление или необычные взаимодействия космических лучей.

Ядерное деление

Радионуклиды производятся как неизбежный результат ядерного деления и термоядерных взрывов . Процесс ядерного деления создает широкий спектр продуктов деления , большинство из которых являются радионуклидами. Дополнительные радионуклиды могут быть созданы при облучении ядерного топлива (создавая ряд актинидов ) и окружающих структур, давая продукты активации . Эта сложная смесь радионуклидов с различной химией и радиоактивностью делает обращение с ядерными отходами и борьбу с радиоактивными осадками особенно проблематичными. [ необходима цитата ]

Синтетический

Искусственный нуклид америций-241, испускающий альфа-частицы, помещенный в камеру Вильсона для визуализации

Синтетические радионуклиды преднамеренно синтезируются с использованием ядерных реакторов , ускорителей частиц или генераторов радионуклидов: [9]

Использует

Радионуклиды используются двумя основными способами: либо только из-за их излучения ( облучение , ядерные батареи ), либо из-за комбинации их химических свойств и излучения (индикаторы, биофармацевтические препараты).

Примеры

В следующей таблице перечислены свойства некоторых радионуклидов, иллюстрирующие спектр их свойств и применений.

Обозначения: Z  =  атомный номер ; N  =  число нейтронов ; DM = режим распада; DE = энергия распада; EC =  электронный захват

Бытовые дымовые извещатели

Контейнер с америцием-241 в дымовом извещателе.
Капсула америция-241, обнаруженная в дымовом извещателе. Круг более темного металла в центре — америций-241; окружающий корпус — алюминий.

Радионуклиды присутствуют во многих домах, поскольку они используются внутри самых распространенных бытовых дымовых извещателей . Используемый радионуклид — америций-241 , который создается путем бомбардировки плутония нейтронами в ядерном реакторе. Он распадается, испуская альфа-частицы и гамма-излучение, превращаясь в нептуний-237 . Дымовые извещатели используют очень небольшое количество 241 Am (около 0,29 микрограмма на дымовой извещатель) в форме диоксида америция . 241 Am используется, поскольку он испускает альфа-частицы, которые ионизируют воздух в ионизационной камере извещателя . К ионизированному воздуху подается небольшое электрическое напряжение, что приводит к возникновению небольшого электрического тока. При наличии дыма некоторые ионы нейтрализуются, тем самым уменьшая ток, что активирует сигнал тревоги извещателя. [14] [15]

Воздействие на организмы

Радионуклиды, которые попадают в окружающую среду, могут вызывать вредные эффекты в виде радиоактивного заражения . Они также могут наносить вред, если они чрезмерно используются во время лечения или иным образом подвергаются воздействию на живые существа, путем радиационного отравления . Потенциальный вред здоровью от воздействия радионуклидов зависит от ряда факторов и «может повредить функции здоровых тканей/органов. Воздействие радиации может вызывать эффекты, варьирующиеся от покраснения кожи и потери волос до радиационных ожогов и острого лучевого синдрома . Длительное воздействие может привести к повреждению клеток и, в свою очередь, к раку. Признаки раковых клеток могут не проявляться в течение многих лет или даже десятилетий после воздействия». [16]

Сводная таблица классов нуклидов, стабильных и радиоактивных

Ниже приведена сводная таблица для списка 989 ​​нуклидов с периодом полураспада более одного часа. Всего 251 нуклид никогда не наблюдался для распада и классически считается стабильным. Из них 90 считаются абсолютно стабильными, за исключением распада протона (который никогда не наблюдался), в то время как остальные являются « наблюдательно стабильными » и теоретически могут подвергаться радиоактивному распаду с чрезвычайно длительным периодом полураспада.

Оставшиеся табулированные радионуклиды имеют период полураспада более 1 часа и хорошо охарактеризованы (см. список нуклидов для полной таблицы). Они включают 30 нуклидов с измеренным периодом полураспада, превышающим предполагаемый возраст Вселенной (13,8 миллиардов лет [17] ), и еще четыре нуклида с периодом полураспада, достаточно большим (> 100 миллионов лет), чтобы они были радиоактивными первичными нуклидами и могли быть обнаружены на Земле, сохранившись из своего присутствия в межзвездной пыли еще до образования Солнечной системы , около 4,6 миллиардов лет назад. Еще 60+ короткоживущих нуклидов могут быть обнаружены естественным путем как дочерние продукты более долгоживущих нуклидов или продуктов космических лучей. Остальные известные нуклиды известны исключительно из искусственной ядерной трансмутации .

Цифры не точны и могут немного измениться в будущем, поскольку «стабильные нуклиды» ​​считаются радиоактивными и имеют очень длительный период полураспада.

Это сводная таблица [18] для 989 нуклидов с периодом полураспада более одного часа (включая стабильные), приведенные в списке нуклидов .

Список коммерчески доступных радионуклидов

Этот список охватывает распространенные изотопы, большинство из которых доступны в очень малых количествах для широкой публики в большинстве стран. Другие, которые не являются общедоступными, продаются в коммерческих целях в промышленных, медицинских и научных областях и подлежат государственному регулированию.

Только гамма-излучение

Только бета-излучение

Только альфа-излучение

Множественные излучатели излучения

Смотрите также

Примечания

  1. ^ Петруччи, Р. Х.; Харвуд, В. С.; Херринг, Ф. Г. (2002). Общая химия (8-е изд.). Prentice-Hall. стр. 1025–26. ISBN 0-13-014329-4.
  2. ^ "Распад и период полураспада" . Получено 14 декабря 2009 г.
  3. ^ Stabin, Michael G. (2007). "3". В Stabin, Michael G (ред.). Radiation Protection and Dosimetry: An Introduction to Health Physics (Представленная рукопись). Springer . doi :10.1007/978-0-387-49983-3. ISBN 978-0387499826.
  4. ^ Best, Lara; Rodrigues, George; Velker, Vikram (2013). "1.3". Radiation Oncology Primer and Review . Demos Medical Publishing . ISBN 978-1620700044.
  5. ^ Лавленд, У.; Моррисси, Д.; Сиборг, Г. Т. (2006). Современная ядерная химия . Wiley-Interscience. стр. 57. Bibcode :2005mnc..book.....L. ISBN 978-0-471-11532-8.
  6. ^ Eisenbud, Merril; Gesell, Thomas F (1997-02-25). Радиоактивность окружающей среды: от природных, промышленных и военных источников. Elsevier. стр. 134. ISBN 9780122351549.
  7. ^ Bagnall, KW (1962). «Химия полония». Advances in Inorganic Chemistry and Radiochemistry 4. New York: Academic Press. pp. 197–226. doi:10.1016/S0065-2792(08)60268-X. ISBN 0-12-023604-4 . Получено 14 июня 2012 г., стр. 746 
  8. ^ Bagnall, KW (1962). "Химия полония". Advances in Inorganic Chemistry and Radiochemistry 4. New York: Academic Press., стр. 198
  9. ^ "Радиоизотопы". www.iaea.org . 2016-07-15 . Получено 2023-06-25 .
  10. ^ Ингвар, Дэвид Х. [на шведском языке] ; Лассен, Нильс А. (1961). «Количественное определение регионального мозгового кровотока у человека». The Lancet . 278 (7206): 806–807. doi :10.1016/s0140-6736(61)91092-3.
  11. ^ Ингвар, Дэвид Х. [на шведском] ; Францен, Йоран (1974). «Распределение мозговой активности при хронической шизофрении». The Lancet . 304 (7895): 1484–1486. ​​doi :10.1016/s0140-6736(74)90221-9. PMID  4140398.
  12. ^ Лассен, Нильс А.; Ингвар, Дэвид Х. [на шведском] ; Скинхой, Эрик [на датском] (октябрь 1978 г.). «Функция мозга и кровоток». Scientific American . 239 (4): 62–71. Bibcode : 1978SciAm.239d..62L. doi : 10.1038/scientificamerican1078-62. PMID  705327.
  13. ^ Severijns, Nathal; Beck, Marcus; Naviliat-Cuncic, Oscar (2006). «Проверки стандартной электрослабой модели в ядерном бета-распаде». Reviews of Modern Physics . 78 (3): 991–1040. arXiv : nucl-ex/0605029 . Bibcode :2006RvMP...78..991S. doi :10.1103/RevModPhys.78.991. S2CID  18494258.
  14. ^ "Дымовые извещатели и америций". world-nuclear.org . Архивировано из оригинала 2010-11-12.
  15. ^ Управление радиационной защиты – Информационный бюллетень Am 241 – Департамент здравоохранения штата Вашингтон. Архивировано 18 марта 2011 г. на Wayback Machine.
  16. ^ «Ионизирующее излучение, последствия для здоровья и защитные меры». Всемирная организация здравоохранения. Ноябрь 2012 г. Получено 27 января 2014 г.
  17. ^ "Космические детективы". Европейское космическое агентство (ESA). 2013-04-02 . Получено 2013-04-15 .
  18. ^ Данные таблицы получены путем подсчета членов списка; см. WP:CALC . Ссылки на данные самого списка приведены ниже в разделе ссылок в списке нуклидов

Ссылки

Дальнейшее чтение

Внешние ссылки