stringtranslate.com

Раствор (химия)

Приготовление соляного раствора путем растворения поваренной соли ( NaCl ) в воде . Соль является растворенным веществом, а вода – растворителем.

В химии раствор это особый вид гомогенной смеси , состоящей из двух или более веществ. В такой смеси растворенное вещество — это вещество, растворенное в другом веществе, известном как растворитель . Если силы притяжения между растворителем и частицами растворенного вещества больше, чем силы притяжения, удерживающие частицы растворенного вещества вместе, частицы растворителя раздвигают частицы растворенного вещества и окружают их. Эти окруженные частицы растворенного вещества затем удаляются от твердого растворенного вещества и попадают в раствор. Процесс смешивания раствора происходит в масштабе, в котором задействованы эффекты химической полярности , что приводит к взаимодействиям, специфичным для сольватации . Раствор обычно имеет состояние растворителя, когда растворитель представляет собой большую часть смеси, как это обычно бывает. Одним из важных параметров раствора является концентрация , которая является мерой количества растворенного вещества в заданном количестве раствора или растворителя. Термин « водный раствор » используется, когда одним из растворителей является вода . [1]

Характеристики

Типы

Гомогенность означает, что компоненты смеси образуют одну фазу. Гетерогенность означает, что компоненты смеси имеют разную фазу. Свойства смеси (такие как концентрация, температура и плотность) могут быть равномерно распределены по объему, но только при отсутствии диффузионных явлений или после их завершения. Обычно растворителем считают вещество, присутствующее в наибольшем количестве. Растворителями могут быть газы, жидкости или твердые вещества. Один или несколько компонентов, присутствующих в растворе, кроме растворителя, называются растворенными веществами. Раствор имеет то же физическое состояние, что и растворитель.

Газовые смеси

Если растворителем является газ , то при заданном наборе условий растворяются только газы (неконденсирующиеся) или пары (конденсирующиеся). Примером газообразного раствора является воздух (кислород и другие газы, растворенные в азоте). Поскольку взаимодействия между молекулами газа практически не играют роли, неконденсирующиеся газы образуют достаточно тривиальные решения. В литературе их даже не относят к растворам, а просто называют однородными смесями газов. Броуновское движение и постоянное молекулярное движение молекул газа гарантируют однородность газовых систем. Смеси неконденсирующихся газов (например, воздух/CO 2 или воздух/ксенон) не распадаются самопроизвольно и не оседают, а четко расслаиваются и разделяют газовые слои в зависимости от их относительной плотности . Силы диффузии эффективно противодействуют силам гравитации в обычных условиях, преобладающих на Земле. В случае конденсируемых паров ситуация иная: при достижении давления насыщенного пара при данной температуре избыток пара конденсируется в жидкое состояние .

Жидкие растворы

Если растворитель является жидкостью , то растворяются почти все газы, жидкости и твердые тела. Вот некоторые примеры:

Контрпримерами служат неоднородные жидкие смеси : коллоиды , суспензии , эмульсии не считаются растворами.

Жидкости организма представляют собой примеры сложных жидких растворов, содержащих множество растворенных веществ. Многие из них являются электролитами, поскольку содержат растворенные ионы, такие как калий . Кроме того, они содержат растворенные молекулы, такие как сахар и мочевина . Кислород и углекислый газ также являются важными компонентами химического состава крови , значительные изменения их концентрации могут быть признаком тяжелого заболевания или травмы.

Твердые решения

Если растворитель является твердым веществом , то растворяться могут газы, жидкости и твердые вещества.

Растворимость

Способность одного соединения растворяться в другом называется растворимостью . [ необходимы разъяснения ] Когда жидкость может полностью раствориться в другой жидкости, эти две жидкости смешиваются . Два вещества, которые никогда не могут смешаться с образованием раствора, называются несмешивающимися .

Все растворы имеют положительную энтропию смешения. Взаимодействия между различными молекулами или ионами могут быть энергетически выгодными или нет. Если взаимодействия неблагоприятны, то свободная энергия уменьшается с увеличением концентрации растворенного вещества. В какой-то момент потеря энергии перевешивает прирост энтропии, и никакие растворенные частицы [ необходимы пояснения ] не могут растворяться; раствор называется насыщенным . Однако точка, в которой раствор может стать насыщенным, может существенно меняться в зависимости от различных факторов окружающей среды, таких как температура , давление и загрязнение. Для некоторых комбинаций растворенного вещества и растворителя пересыщенный раствор можно приготовить путем повышения растворимости (например, путем повышения температуры) для растворения большего количества растворенного вещества, а затем ее снижения (например, путем охлаждения).

Обычно, чем выше температура растворителя, тем больше данного твердого растворенного вещества он может растворить. Однако растворимость большинства газов и некоторых соединений снижается с повышением температуры. Такое поведение является результатом экзотермической энтальпии раствора . Некоторые поверхностно-активные вещества демонстрируют такое поведение. Растворимость жидкостей в жидкостях обычно менее чувствительна к температуре, чем растворимость твердых веществ или газов.

Характеристики

Физические свойства соединений, такие как температура плавления и точка кипения, изменяются при добавлении других соединений. Вместе они называются Коллигативные свойства . Существует несколько способов количественного определения количества одного соединения, растворенного в других соединениях, которые в совокупности называются концентрацией . Примеры включают молярность , объемную долю и мольную долю .

Свойства идеальных растворов можно рассчитать по линейной комбинации свойств его компонентов. Если и растворенное вещество, и растворитель существуют в равных количествах (например, в 50-процентном растворе этанола и 50-процентном водном растворе), понятия «растворенное вещество» и «растворитель» становятся менее актуальными, но в качестве растворителя чаще всего используется вещество. обычно обозначается как растворитель (в данном примере вода).

Характеристики жидкого раствора

В принципе, все типы жидкостей могут вести себя как растворители: жидкие благородные газы , расплавленные металлы, расплавленные соли, расплавленные ковалентные сетки и молекулярные жидкости. В практике химии и биохимии большинство растворителей представляют собой молекулярные жидкости. Их можно разделить на полярные и неполярные в зависимости от того, обладают ли их молекулы постоянным электрическим дипольным моментом . Другое различие заключается в том, могут ли их молекулы образовывать водородные связи ( протонные и апротонные растворители). Вода , наиболее часто используемый растворитель, является полярной и поддерживает водородные связи.

Вода является хорошим растворителем, поскольку ее молекулы полярны и способны образовывать водородные связи (1).

Соли растворяются в полярных растворителях, образуя положительные и отрицательные ионы, которые притягиваются к отрицательному и положительному концам молекулы растворителя соответственно. Если растворителем является вода, гидратация происходит, когда заряженные ионы растворенного вещества окружаются молекулами воды. Стандартным примером является водная соленая вода. Такие растворы называются электролитами . Всякий раз, когда соль растворяется в воде, необходимо учитывать ионную ассоциацию .

Полярные растворенные вещества растворяются в полярных растворителях, образуя полярные или водородные связи. Например, все алкогольные напитки представляют собой водные растворы этанола . С другой стороны, неполярные растворенные вещества лучше растворяются в неполярных растворителях. Примерами являются углеводороды, такие как масло и жир , которые легко смешиваются, но несовместимы с водой.

Примером несмешиваемости нефти и воды является утечка нефти из поврежденного танкера, которая не растворяется в океанской воде, а плавает на поверхности.

Приготовление из составляющих ингредиентов

В лабораториях принято готовить раствор непосредственно из входящих в его состав ингредиентов. В практическом расчете возможны три случая:

В следующих уравнениях A — растворитель, B — растворенное вещество, а C — концентрация. Объем растворенного вещества рассматривается в рамках модели идеального раствора.

Пример: приготовьте 2 г/100 мл раствора NaCl с 1 л воды . Плотность полученного раствора считается равной плотности воды, причем утверждение справедливо, особенно для разбавленных растворов, поэтому информация о плотности не требуется.

м B = CV A = (2/100) г/мл × 1000 мл = 20 г

Химики часто готовят концентрированные исходные растворы , которые затем можно разбавлять по мере необходимости для лабораторных применений. Стандартные растворы – это растворы, концентрации растворенных веществ в которых точно известны.

Смотрите также

Рекомендации

  1. ^ ab «Решения». Химический факультет Вашингтонского университета . Вашингтонский университет . Проверено 13 апреля 2018 г.

Внешние ссылки