stringtranslate.com

Токен-ринг

Два примера сетей Token Ring: а) Использование одного MAU б) Использование нескольких MAU, подключенных друг к другу
Сеть Токен-Ринг
Сеть Token Ring: объяснение работы MAU
Гермафродитный разъем IBM с запирающим зажимом. Контакты экрана хорошо заметны, позолоченные сигнальные контакты менее заметны.

Token Ring — это технология компьютерных сетей физического и канального уровня, используемая для построения локальных сетей . Он был представлен IBM в 1984 году и стандартизирован в 1989 году как IEEE 802.5 . Он использует специальный трехбайтовый кадр , называемый токеном , который передается по логическому кольцу рабочих станций или серверов . Эта передача маркера представляет собой метод доступа к каналу , обеспечивающий равноправный доступ для всех станций и устраняющий конфликты методов доступа , основанных на конкуренции .

Token Ring была успешной технологией, особенно в корпоративных средах, но постепенно ее затмили более поздние версии Ethernet . Gigabit Token Ring был стандартизирован в 2001 году, но с тех пор разработка остановилась. [1]

История

В начале 1970-х годов был разработан широкий спектр различных технологий локальных сетей , одна из которых, Cambridge Ring , продемонстрировала потенциал кольцевой топологии с передачей маркеров , и многие команды по всему миру начали работать над своими собственными реализациями. В исследовательской лаборатории IBM в Цюрихе Вернер Букс и Ханс Мюллер, в частности, работали над проектированием и разработкой технологии IBM Token Ring [2] , а ранние работы в Массачусетском технологическом институте [3] привели к созданию токена Proteon 10 Мбит/с ProNet-10. Кольцевая сеть в 1981 году [4]  — в том же году, когда производитель рабочих станций Apollo Computer представил свою собственную сеть Apollo Token Ring (ATR) со скоростью 12 Мбит/с, работающую по коаксиальному кабелю RG-6U сопротивлением 75 Ом . [ нужна цитация ] Позже компания Proteon разработала версию со скоростью 16 Мбит/с, которая работала по неэкранированной витой паре.

1985 г. Запуск IBM

IBM выпустила свой собственный продукт Token Ring 15 октября 1985 года. [5] [6] Он работал со скоростью 4  Мбит/с , [7] и было возможно подключение к IBM PC, компьютерам среднего класса и мейнфреймам. Он использовал удобную физическую топологию со звездой и проходил по экранированной витой паре. Вскоре после этого он стал основой стандарта IEEE 802.5. [8] [ не удалось проверить ]

В это время IBM утверждала, что локальные сети Token Ring превосходят Ethernet , особенно под нагрузкой, [9] , но эти утверждения обсуждались. [10]

В 1988 году рабочая группа 802.5 стандартизировала более быстрый протокол Token Ring со скоростью 16 Мбит/с. [11] Увеличение скорости до 100 Мбит/с было стандартизировано и продано на закате существования Token Ring и никогда широко не использовалось. [12] Несмотря на то, что стандарт 1000 Мбит/с был одобрен в 2001 году, на рынок так и не было выведено ни одной продукции, а деятельность по стандартизации зашла в тупик [13] , поскольку на рынке локальных сетей доминировали Fast Ethernet и Gigabit Ethernet .

Галерея

Сравнение с Ethernet

Ранние Ethernet и Token Ring использовали общую среду передачи. Они различались методами доступа к каналам . Эти различия стали несущественными, поскольку современные сети Ethernet состоят из коммутаторов и каналов «точка-точка» , работающих в полнодуплексном режиме.

Token Ring и устаревший Ethernet имеют некоторые заметные различия:

Операция

Станции в локальной сети Token Ring логически организованы в кольцевую топологию , при этом данные передаются последовательно от одной кольцевой станции к другой, а по кольцу циркулирует управляющий токен, контролирующий доступ. Подобные механизмы передачи маркеров используются ARCNET , Token Bus , 100VG-AnyLAN (802.12) и FDDI , и они имеют теоретические преимущества перед CSMA/CD раннего Ethernet. [18]

Сеть Token Ring можно смоделировать как систему опроса , в которой один сервер обслуживает очереди в циклическом порядке. [19]

Контроль доступа

Процесс передачи данных происходит следующим образом:

Устройства многостанционного доступа и устройства контролируемого доступа

Многостанционный модуль доступа IBM 8228 с сопутствующим пособием по настройке для инициализации реле на каждом порту. Устройство полностью пассивно и не требует питания.

Физически сеть Token Ring подключается в виде звезды , с «MAU» в центре, «рукавами» к каждой станции, а петля проходит через каждую. [20]

MAU может быть представлен в виде концентратора или коммутатора; поскольку в Token Ring не было коллизий, многие MAU производились как концентраторы. Хотя Token Ring работает на LLC , он включает в себя маршрутизацию источника для пересылки пакетов за пределы локальной сети. Большинство MAU по умолчанию настроены в конфигурации «концентрации», но более поздние MAU также поддерживают функцию, позволяющую действовать исключительно как разветвители, а не концентраторы, как, например, в IBM 8226. [21]

MAU работают как концентраторы или сплиттеры.

Позже IBM выпустит модули контролируемого доступа, которые смогут поддерживать несколько модулей MAU, известных как модуль Lobe Attachment Module . CAU поддерживали такие функции, как резервирование двойного кольца для альтернативной маршрутизации в случае неработающего порта, модульную концентрацию с помощью LAM и несколько интерфейсов, как у большинства более поздних MAU. [22] Это обеспечивало более надежную настройку и удаленное управление, чем неуправляемый концентратор MAU.

Кабели и интерфейсы

В качестве кабеля обычно используется IBM «Тип-1», тяжелая двухпарная экранированная витая пара сопротивлением 150 Ом . Это был базовый кабель для «IBM Cabling System», структурированной кабельной системы, которая, как надеялась IBM, получит широкое распространение. Были использованы уникальные гермафродитные разъемы , называемые в официальном письме разъемами данных IBM или в просторечии разъемы Boy George. [23] Недостатком разъемов является то, что они довольно громоздки, требуют не менее 3 см × 3 см (1,2 × 1,2 дюйма) пространства на панели и являются относительно хрупкими. Преимущества разъемов заключаются в том, что они не имеют пола и имеют превосходное экранирование по сравнению со стандартным неэкранированным 8P8C. Разъемы у компьютера обычно были «мама» DE-9 . Существовало несколько других типов кабелей, например кабель типа 2 и типа 3. [24] [25]

В более поздних реализациях Token Ring также поддерживалась кабельная система Cat 4 , поэтому разъемы 8P8C (RJ45) использовались как на MAU, так и на CAU и сетевых картах; многие сетевые карты поддерживают как 8P8C, так и DE-9 для обратной совместимости. [20]

Технические детали

Типы рамок

Токен

Когда ни одна станция не отправляет кадр, по циклу проходит специальный маркерный кадр. Этот специальный кадр маркера повторяется от станции к станции до тех пор, пока не достигнет станции, которой необходимо отправить данные.

Токены имеют длину три октета и состоят из начального разделителя, октета управления доступом и конечного разделителя.

Прервать кадр

Используется отправляющей станцией для прерывания передачи.

Данные

Кадры данных несут информацию для протоколов верхнего уровня, тогда как командные кадры содержат управляющую информацию и не содержат данных для протоколов верхнего уровня. Кадры данных и команд различаются по размеру в зависимости от размера информационного поля.

Начальный разделитель. Начальный разделитель состоит из специального битового шаблона, обозначающего начало кадра. Биты от наиболее значимого до наименее значимого: J,K,0,J,K,0,0,0. J и K являются нарушениями правил. Поскольку манчестерское кодирование является самосинхронизирующимся и имеет переход для каждого закодированного бита 0 или 1, кодировки J и K нарушают это и будут обнаружены аппаратным обеспечением. Поля «Начальный разделитель» и «Конечный разделитель» используются для обозначения границ кадра.
Контроль доступа. Это байтовое поле состоит из следующих битов, от наиболее значимого до наименее значимого.
П, П, П, Т, М, Р, Р, Р. Биты P являются битами приоритета, T — бит маркера, установка которого указывает, что это кадр маркера, M — бит монитора, который устанавливается станцией активного мониторинга (AM), когда она видит этот кадр, а биты R зарезервированы. биты.
Управление кадром – однобайтовое поле, содержащее биты, описывающие часть данных содержимого кадра, которая указывает, содержит ли кадр данные или управляющую информацию. В управляющих кадрах этот байт определяет тип управляющей информации.

Тип кадра – 01 указывает кадр LLC IEEE 802.2 (данные) и игнорирует управляющие биты; 00 указывает кадр MAC, а биты управления указывают тип кадра управления MAC .

Адрес назначения – шестибайтовое поле, используемое для указания физического адреса места назначения.
Адрес источника – содержит физический адрес станции-отправителя. Это шестибайтовое поле, которое представляет собой либо локальный назначенный адрес (LAA), либо универсальный адрес (UAA) адаптера отправляющей станции.
Данные – поле переменной длины длиной 0 или более байт, максимально допустимый размер зависит от скорости кольца, содержащее данные управления MAC или информацию верхнего уровня. Максимальная длина 4500 байт.
Последовательность проверки кадра – четырехбайтовое поле, используемое для хранения расчета CRC для проверки целостности кадра получателем.
Конечный разделитель. Аналог начального разделителя. Это поле отмечает конец кадра и состоит из следующих битов, от наиболее значимого до наименее значимого.
Дж,К,1,Дж,К,1,И,Е. I — бит промежуточного кадра, а E — бит ошибки.
Статус кадра – однобайтовое поле, используемое в качестве примитивной схемы подтверждения того, был ли кадр распознан и скопирован его предполагаемым получателем.

A = 1, адрес распознан C = 1, кадр скопирован

Активные и резервные мониторы

Каждая станция в сети Token Ring является либо станцией активного монитора (AM), либо станцией резервного монитора (SM). Одновременно на кольце может быть только один активный монитор. Активный наблюдатель выбирается посредством выборов или процесса конкуренции мониторов .

Процесс конфликта мониторов инициируется, когда происходит следующее:

Когда имеет место любое из вышеперечисленных условий и станция решает, что необходим новый монитор, она передает кадр маркера заявки , объявляя, что она хочет стать новым монитором. Если этот токен возвращается отправителю, он может стать монитором. Если какая-либо другая станция одновременно попытается стать монитором, то в процессе выборов победит станция с самым высоким MAC-адресом . Каждая вторая станция становится резервным монитором. Все станции должны иметь возможность при необходимости стать активной станцией мониторинга.

Активный монитор выполняет ряд функций администрирования кольца. Первая функция — работать в качестве главного тактового генератора кольца, чтобы обеспечить синхронизацию сигнала для проводных станций. Другая функция AM — вставить в кольцо 24-битную задержку, чтобы гарантировать, что в кольце всегда имеется достаточная буферизация для циркуляции токена. Третья функция AM заключается в обеспечении циркуляции ровно одного токена всякий раз, когда нет передаваемого кадра, а также в обнаружении разрыва кольца. Наконец, AM отвечает за удаление циркулирующих кадров из кольца.

Процесс вставки токена

Станции Token Ring должны пройти пятиэтапный процесс вставки кольца, прежде чем им будет разрешено участвовать в кольцевой сети. Если на каком-либо из этих этапов произойдет сбой, станция Token Ring не включится в кольцо, и драйвер Token Ring может сообщить об ошибке.

Дополнительная схема приоритетов

В некоторых приложениях преимуществом является возможность назначить одну станцию ​​с более высоким приоритетом. Token Ring определяет дополнительную схему такого типа, как и CAN Bus (широко используемый в автомобильных приложениях), но Ethernet этого не делает.

В приоритетном MAC-адресе Token Ring используются восемь уровней приоритета: 0–7. Когда станция, желающая передать, получает маркер или кадр данных с приоритетом, меньшим или равным запрошенному приоритету станции, она устанавливает биты приоритета в желаемый приоритет. Станция не осуществляет передачу немедленно; жетон циркулирует по среде, пока не вернется на станцию. После отправки и получения собственного кадра данных станция понижает приоритет токена до исходного.

Ниже приведены следующие восемь приоритетов доступа и типов трафика для устройств, поддерживающих 802.1Q и 802.1p :

Соединение с Ethernet

Интерфейсы Token Ring и Ethernet на 2210-24M

Решения для мостов для сетей Token Ring и Ethernet включали мост AT&T StarWAN 10:4, [26] мост IBM 8209 LAN [26] и мост Microcom LAN. Альтернативные решения для подключения включали маршрутизатор, который можно было настроить для динамической фильтрации трафика, протоколов и интерфейсов, например многопротокольный маршрутизатор IBM 2210-24M, который содержал интерфейсы Ethernet и Token Ring. [27]

Поддержка операционной системы

В 2012 году Дэвид С. Миллер объединил патч для удаления поддержки сети Token Ring из ядра Linux . [28]

Смотрите также

Рекомендации

  1. ^ «Деятельность IEEE 802.5» . ieee802.org . ИИЭЭ . Проверено 29 октября 2023 г.
  2. ^ «IEEE чествует пионеров локальной сети в Цюрихе» (пресс-релиз). Цюрих, Швейцария: IBM . 14 апреля 2003 г.
  3. ^ Дж. Ноэль Чиаппа (апрель – июнь 2014 г.). «Ранняя работа Token Ring в Массачусетском технологическом институте». IEEE Анналы истории вычислений . 36 (2): 80–85. дои : 10.1109/MAHC.2014.14 . S2CID  30761524.
  4. ^ Пелки, Джеймс. «14.18 Протеон в главе 14 — Межсетевое взаимодействие: появление 1985–1988 гг.». История компьютерных коммуникаций .
  5. ^ "СЕТЬ IBM TOKEN-RING" . ИБМ . 15 октября 1985 г. Проверено 11 марта 2021 г.
  6. Крэбб, Дон (24 марта 1986 г.). «Основные поставщики различаются в сетевом подходе». Инфомир . Том. 8, нет. 12. с. 27.
  7. ^ "Информационный мир". 21 ноября 1988 года.
  8. ^ Стандарты IEEE: Область рабочей группы P802.5. Ieee802.org. Проверено 30 октября 2011 г.
  9. ^ Рекомендации по использованию локальной сети IEEE 802.3 . ИБМ . ГГ22-9422-0.
  10. ^ Дэвид Р. Боггс; Джеффри С. Могул; Кристофер А. Кент (1988). «Измеренная пропускная способность Ethernet: мифы и реальность» (PDF) . Обзор компьютерных коммуникаций ACM SIGCOMM . 25 (1): 123–136. дои : 10.1145/205447.205460. S2CID  52820607.
  11. ^ Урс фон Бург; Мартин Кенни (декабрь 2003 г.). «Спонсоры, сообщества и стандарты: Ethernet против Token Ring в локальном сетевом бизнесе» (PDF) . Промышленность и инновации . 10 (4). Тейлор и Фрэнсис Ltd : 351–375. дои : 10.1080/1366271032000163621. S2CID  153804163. Архивировано из оригинала (PDF) 19 февраля 2018 г.
  12. ^ аб Джонатан Фоллоуз (2000). Решения Token Ring (PDF) (информационный документ). Международная организация технической поддержки IBM . Архивировано из оригинала (PDF) 6 августа 2016 г. IBM не рассматривает высокоскоростное соединение Token Ring как требование для большинства своих клиентов, и поэтому было принято решение не предоставлять высокоскоростные каналы связи Token Ring со скоростью 100 Мбит/с в своих продуктах...
  13. ^ «Деятельность IEEE 802.5» . Комитет по стандартам IEEE 802 LAN/MAN . Проверено 9 мая 2023 г.
  14. ^ Луи Оланд. «Блок многостанционного доступа 8228». Ps-2.kev009.com . Архивировано из оригинала 28 марта 2018 г. Проверено 3 августа 2016 г.
  15. ^ «В чем разница между концентратором Ethernet и коммутатором?». Архивировано из оригинала 14 марта 2017 года . Проверено 10 мая 2016 г.
  16. ^ «Пассивный Ethernet-концентратор» . Zen22142.zen.co.uk . Архивировано из оригинала 24 августа 2016 г. Проверено 3 августа 2016 г.
  17. ^ «Сеть — возможно дублирование MAC-адреса в одной локальной сети?». Ошибка сервера. 03.01.2013 . Проверено 3 августа 2016 г.
  18. Шизли, Джон (2 апреля 2008 г.). «Кто-нибудь все еще ИСПОЛЬЗУЕТ Token Ring?». Техреспублика . Архивировано из оригинала 9 октября 2013 г.
  19. ^ Букс, В. (1989). «Локальные сети Token-Ring и их производительность». Труды IEEE . 77 (2): 238. дои : 10.1109/5.18625.
  20. ^ ab «Зачем покупать у IBM?» (PDF) . ИБМ . Архивировано (PDF) из оригинала 16 июня 2020 г. Проверено 3 августа 2016 г.
  21. ^ Луи Оланд. «Соединение 8226 TR RJ45 / Модель 001». Ярый инструмент капитализма . Проверено 9 мая 2023 г.
  22. ^ «IBM 8230 Блок контролируемого доступа» (PDF) . Public.dhe.ibm.com . Архивировано из оригинала (PDF) 16 июня 2020 г. Проверено 3 августа 2016 г.
  23. ^ «Локальные сети — Token Ring» . Scottsnetworkclass.com. Архивировано из оригинала 1 августа 2013 г. Проверено 15 июня 2013 г.
  24. ^ Руководство по устранению неполадок Token Ring. iUniverse. Декабрь 1998 г. ISBN. 978-1-58348-012-0.
  25. ^ «Сетевой мир». 25 апреля 1988 года.
  26. ^ аб Миер, Эдвин (3 июня 1991 г.). «Покупай с умом». Сетевой мир . Том. 8, нет. 21. IDG Network World Inc. с. 56 . Проверено 3 августа 2016 г.
  27. ^ Описание многопротокольного маршрутизатора IBM 2210 Nways и сценарии настройки - Том I (PDF) (Третье изд.). Международная организация технической поддержки IBM Центр Роли. Июнь 1997 г. SG24-4446-02 . Проверено 3 августа 2016 г.
  28. ^ Корбет, Джонатан. «Конец эры Token Ring?». LWN.net . Проверено 22 сентября 2023 г.

Общий

Внешние ссылки