stringtranslate.com

Электрический элемент

В электротехнике электрические элементы — это концептуальные абстракции, представляющие идеализированные электрические компоненты , [1] такие как резисторы , конденсаторы и катушки индуктивности , используемые при анализе электрических сетей . Все электрические сети можно рассматривать как множество электрических элементов, соединенных между собой проводами. Если элементы примерно соответствуют реальным компонентам, их представление может быть в виде принципиальной схемы или принципиальной схемы . Это называется моделью схемы с сосредоточенными элементами . В других случаях для моделирования сети в модели с распределенными элементами используются бесконечно малые элементы .

Эти идеальные электрические элементы представляют собой реальные физические электрические или электронные компоненты . Тем не менее, они не существуют физически и предполагается, что они обладают идеальными свойствами. Напротив, реальные электрические компоненты имеют далеко не идеальные свойства, некоторую степень неопределенности в своих значениях и некоторую степень нелинейности. Для моделирования неидеального поведения реального компонента схемы может потребоваться комбинация нескольких идеальных электрических элементов для аппроксимации его функции. Например, предполагается, что элемент цепи индуктора имеет индуктивность , но не имеет сопротивления или емкости , в то время как реальный индуктор, катушка с проводом, помимо индуктивности имеет некоторое сопротивление. Это можно смоделировать с помощью идеального элемента индуктивности, включенного последовательно с сопротивлением.

Анализ цепей с использованием электрических элементов полезен для понимания практических сетей электрических компонентов. Анализ того, как на сеть влияют ее отдельные элементы, позволяет оценить, как будет вести себя реальная сеть.

Типы

Элементы схемы можно разделить на разные категории. Во-первых, сколько клемм им нужно для подключения к другим компонентам:

Элементы также можно разделить на активные и пассивные:

Еще одно различие между линейным и нелинейным:

Однопортовые элементы

Для моделирования любого электрического компонента или схемы требуется всего девять типов элементов ( без мемристора ), пять пассивных и четыре активных. [2] Каждый элемент определяется соотношением между переменными состояния сети: current , ; Напряжение , ; заряжать , ; и магнитный поток , .

в этих отношениях не обязательно представляет собой что-то физически значимое. В случае генератора тока интеграл тока по времени представляет собой количество электрического заряда, физически доставляемого генератором. Вот временной интеграл напряжения, но представляет ли он физическую величину или нет, зависит от природы источника напряжения. Для напряжения, создаваемого магнитной индукцией, оно имеет смысл, но для электрохимического источника или напряжения, являющегося выходом другой цепи, ему не придается никакого физического смысла.
Оба эти элемента обязательно являются нелинейными элементами. См. #Нелинейные элементы ниже.
Эти четыре элемента являются примерами двухпортовых элементов.

Нелинейные элементы

Концептуальные симметрии резистора, конденсатора, катушки индуктивности и мемристора.

В действительности все компоненты схемы нелинейны и могут быть аппроксимированы как линейные только в определенном диапазоне. Для более точного описания пассивных элементов вместо простой пропорциональности используется их конститутивное отношение . Шесть определяющих отношений могут быть образованы из любых двух переменных схемы. Исходя из этого, теоретически предполагается наличие четвертого пассивного элемента, поскольку всего в линейном сетевом анализе обнаружено только пять элементов (не считая различных зависимых источников). Этот дополнительный элемент называется мемристором . Он имеет какое-либо значение только как зависящий от времени нелинейный элемент; как не зависящий от времени линейный элемент, он сводится к обычному резистору. Следовательно, он не включен в модели линейных нестационарных (LTI) схем. Определяющие отношения пассивных элементов определяются так: [3]

где – произвольная функция двух переменных.

В некоторых особых случаях определяющее отношение упрощается до функции одной переменной. Это справедливо для всех линейных элементов, но также, например, идеальный диод , который в терминах теории цепей является нелинейным резистором, имеет определяющее соотношение вида . Согласно этому определению, как независимые источники напряжения, так и независимые источники тока могут считаться нелинейными резисторами. [3]

Четвертый пассивный элемент, мемристор, был предложен Леоном Чуа в статье 1971 года, но физический компонент, демонстрирующий мемристор, был создан только тридцать семь лет спустя. 30 апреля 2008 года сообщалось, что рабочий мемристор был разработан командой HP Labs под руководством ученого Р. Стэнли Уильямса . [4] [5] [6] [7] С появлением мемристора теперь можно связать каждую пару четырех переменных.

В анализе иногда используются два специальных нелинейных элемента, но они не являются идеальным аналогом какого-либо реального компонента:

Иногда они используются в моделях компонентов с более чем двумя выводами: например, в транзисторах. [3]

Двухпортовые элементы

Все вышеперечисленное является двухполюсными или однополюсными элементами, за исключением зависимых источников. В сетевой анализ обычно вводятся два пассивных линейных двухпортовых элемента без потерь. Их определяющие соотношения в матричной записи:

Трансформатор
Гиратор

Трансформатор преобразует напряжение на одном порту в напряжение на другом в соотношении n . Ток между одними и теми же двумя портами отображается как 1/ n . С другой стороны, гиратор преобразует напряжение на одном порту в ток на другом. Аналогично, токи сопоставляются с напряжениями. Величина r в матрице указана в единицах сопротивления. Гиратор — необходимый элемент анализа, поскольку он не является взаимным . Сети, построенные только из основных линейных элементов, обязательно являются взаимными, поэтому их нельзя использовать сами по себе для представления невзаимной системы. Однако не обязательно иметь одновременно трансформатор и гиратор. Два гиратора в каскаде эквивалентны трансформатору, но для удобства трансформатор обычно оставляют. Введение гиратора также делает несущественными как емкость, так и индуктивность, поскольку гиратор, заканчивающийся одним из них на порте 2, будет эквивалентен другому на порте 1. Однако трансформатор, емкость и индуктивность обычно сохраняются в анализе, поскольку они — это идеальные свойства основных физических компонентов трансформатора , катушки индуктивности и конденсатора , тогда как практический гиратор должен быть сконструирован как активная цепь. [8] [9] [10]

Примеры

Ниже приведены примеры представления компонентов в виде электрических элементов.

Смотрите также

Рекомендации

  1. ^ Томас, Роланд Э.; Роза, Альберт Дж.; Туссен, Грегори Дж. (2016). Анализ и проектирование линейных цепей (8-е изд.). Уайли. п. 17. ISBN 978-1-119-23538-5. Чтобы различать устройство (настоящее устройство) и его модель (примерный аналог), мы называем модель элементом схемы. Таким образом, устройство — это аппаратное обеспечение, описанное в каталогах производителей и спецификациях деталей. Элемент — это модель, описанная в учебниках по схемотехнике.
  2. ^ Умеш, Рай (2007). «Набор инструментов графа связей для работы со сложной переменной». IET Теория управления и ее приложения . 3 (5): 551–560. doi : 10.1049/iet-cta.2007.0347.
  3. ^ abc Лиляна Трайкович, «Нелинейные схемы», Справочник по электротехнике (под редакцией: Вай-Кай Чен), стр. 75–77, Academic Press, 2005 ISBN 0-12-170960-4 
  4. ^ Струков, Дмитрий Б; Снайдер, Грегори С; Стюарт, Дункан Р.; Уильямс, Стэнли Р. (2008), «Обнаружен пропавший мемристор», Nature , 453 (7191): 80–83, Бибкод : 2008Natur.453...80S, doi : 10.1038/nature06932, PMID  18451858
  5. ^ EETimes, 30 апреля 2008 г., создан мемристор «Недостающее звено», EETimes, 30 апреля 2008 г.
  6. ^ Инженеры находят «недостающее звено» электроники - 30 апреля 2008 г.
  7. ^ Исследователи доказывают существование нового базового элемента для электронных схем - «мемристора» - 30 апреля 2008 г.
  8. ^ Вадхва, CL, Сетевой анализ и синтез , стр. 17–22, New Age International, ISBN 81-224-1753-1
  9. ^ Герберт Дж. Карлин, Пьер Паоло Чиваллери, Проектирование широкополосных схем , стр. 171–172, CRC Press, 1998 ISBN 0-8493-7897-4
  10. ^ Вьекослав Дамич, Джон Монтгомери, Мехатроника с помощью графов связей: объектно-ориентированный подход к моделированию и симуляции , стр. 32–33, Springer, 2003 ISBN 3-540-42375-3