stringtranslate.com

Ледник

Ледник плато Гейки в Гренландии .
Ташахфернер в Эцтальских Альпах в Австрии . Гора слева — Вильдшпитце (3,768 м), вторая по высоте в Австрии. Справа находится область с открытыми трещинами , где ледник стекает по своего рода большому утесу . Расстояние от левой до правой границы изображения равно c. Реально 1,5 км. [1]

Ледник ( США : / ˈ ɡ l ʃ ər / ; Великобритания : / ˈ ɡ l æ s i ər , ˈ ɡ l s i ər / ) — стойкое тело плотного льда , которое постоянно движется под собственным весом. Ледник образуется там, где накопление снега превышает его абсорбцию в течение многих лет, часто столетий . Он приобретает отличительные черты, такие как трещины и сераки , поскольку медленно течет и деформируется под действием напряжений, вызванных его весом. Во время движения он стирает камни и обломки со своего субстрата, создавая такие формы рельефа, как цирки , морены или фьорды . Хотя ледник может впадать в водоем, он образуется только на суше и отличается от гораздо более тонкого морского и озерного льда, который образуется на поверхности водоемов.

На Земле 99% ледникового льда содержится в обширных ледяных щитах (также известных как «континентальные ледники») в полярных регионах , но ледники можно найти в горных хребтах на всех континентах, кроме материковой части Австралии, включая высокоширотные районы Океании. океанические островные страны, такие как Новая Зеландия . Между 35° северной широты и 35° южной широты ледники встречаются только в Гималаях , Андах и нескольких высоких горах в Восточной Африке, Мексике, Новой Гвинее и на Зард-Кухе в Иране. [2] В Пакистане , где известно более 7000 ледников, больше ледникового льда, чем в любой другой стране за пределами полярных регионов. [3] [4] Ледники покрывают около 10% поверхности суши Земли. Континентальные ледники покрывают почти 13 миллионов км 2 (5 миллионов квадратных миль), или около 98% территории Антарктиды , занимающей 13,2 миллиона км 2 (5,1 миллиона квадратных миль), со средней толщиной льда 2100 м (7000 футов). Гренландия и Патагония также имеют огромные пространства континентальных ледников. [5] Объем ледников, не считая ледяных щитов Антарктиды и Гренландии, оценивается в 170 000 км 3 . [6]

Ледниковый лед является крупнейшим резервуаром пресной воды на Земле, вмещающим около 69 процентов мировых запасов пресной воды. [7] [8] Многие ледники умеренного , альпийского и сезонного полярного климата хранят воду в виде льда в холодное время года и выделяют ее позже в виде талой воды , поскольку более теплые летние температуры вызывают таяние ледника, создавая источник воды , который особенно важен для растений, животных и человека, когда другие источники могут быть скудными. Однако в условиях высокогорья и Антарктики сезонная разница температур часто недостаточна для выброса талой воды.

Поскольку на ледниковую массу влияют долгосрочные климатические изменения, например, осадки , средняя температура и облачный покров , изменения ледниковой массы считаются одними из наиболее чувствительных индикаторов изменения климата и являются основным источником колебаний уровня моря .

Большой кусок сжатого льда или ледник кажется синим , так же как большое количество воды кажется синим . Это связано с тем, что молекулы воды поглощают другие цвета более эффективно, чем синий. Другая причина синего цвета ледников – отсутствие пузырьков воздуха. Пузырьки воздуха, придающие льду белый цвет, выдавливаются под давлением, увеличивая плотность образовавшегося льда.

Этимология и родственные термины

Слово « ледник» заимствовано из французского языка и восходит через франко-провансальский язык к вульгарному латинскому glaciārium , происходящему от позднелатинского glacia и, в конечном счете, от латинского glaciēs , что означает «лед». [9] Процессы и особенности, вызванные ледниками или связанные с ними, называются ледниковыми. Процесс образования, роста и течения ледников называется оледенением . Соответствующая область исследований называется гляциологией . Ледники являются важными компонентами глобальной криосферы .

Типы

Классификация по размеру, форме и поведению

Ледяная шапка Келькайя в Перу — вторая по величине ледниковая зона в тропиках.

Ледники классифицируются по морфологии, термическим характеристикам и поведению. Альпийские ледники образуются на гребнях и склонах гор. Ледник, заполняющий долину, называется долинным ледником или, альтернативно, альпийским ледником или горным ледником . [10] Большое количество ледникового льда на горе, горном хребте или вулкане называется ледяной шапкой или ледяным полем . [11] Ледяные шапки по определению имеют площадь менее 50 000 км 2 (19 000 квадратных миль).

Ледниковые тела площадью более 50 000 км 2 (19 000 квадратных миль) называются ледниковыми щитами или континентальными ледниками . [12] Глубина в несколько километров, они скрывают основную топографию. Из их поверхности выступают только нунатаки . Единственные сохранившиеся ледяные щиты — это два, которые покрывают большую часть Антарктиды и Гренландии. [13] Они содержат огромное количество пресной воды, достаточное, чтобы в случае их таяния глобальный уровень моря поднялся более чем на 70 м (230 футов). [14] Части ледяного щита или шапки, которые простираются в воду, называются шельфовыми ледниками ; они, как правило, тонкие, с ограниченными уклонами и пониженными скоростями. [15] Узкие, быстро движущиеся участки ледникового покрова называются ледяными потоками . [16] [17] В Антарктиде многие потоки льда стекают в большие шельфовые ледники . Некоторые впадают прямо в море, часто с ледяным языком , как ледник Мерца .

Ледники приливной воды — это ледники, которые заканчиваются в море, включая большинство ледников, стекающих с Гренландии, Антарктиды, островов Баффина , Девона и Элсмира в Канаде, юго-восточной Аляски , а также ледяных полей Северной и. Когда лед достигает моря, его куски откалываются или откалываются, образуя айсберги . Большинство приливных ледников откалываются над уровнем моря, что часто приводит к огромным последствиям, когда айсберг ударяется о воду. Ледники приливной воды претерпевают многовековые циклы наступления и отступления , которые гораздо меньше страдают от изменения климата, чем другие ледники. [18]

Классификация по термическому состоянию

Ледник Уэббера на Грант-Ленде — наступающий полярный ледник.

В термическом отношении ледник умеренного пояса находится в точке таяния в течение всего года, от поверхности до подножия. Лед полярного ледника всегда находится ниже порога замерзания от поверхности до основания, хотя поверхностный снежный покров может подвергаться сезонному таянию. Приполярный ледник включает как умеренный, так и полярный лед, в зависимости от глубины под поверхностью и положения по длине ледника. Аналогичным образом тепловой режим ледника часто описывается его базальной температурой. Ледник с холодным основанием находится ниже точки замерзания на границе раздела лед-земля и, таким образом, примерзает к нижележащему субстрату. Ледник с теплым основанием находится выше или при замерзании на границе раздела и может скользить по этому контакту. [19] Считается, что этот контраст в значительной степени определяет способность ледника эффективно разрушать свое ложе , поскольку скольжение льда способствует отрыву камней от поверхности внизу. [20] Ледники, которые частично основаны на холоде, а частично на тепле, известны как политермические . [19]

Формирование

Ледниковая пещера , расположенная на леднике Перито Морено в Аргентине.

Ледники образуются там, где накопление снега и льда превышает абляцию . Ледник обычно возникает из цирковой формы рельефа (также известной как корри или cwm ) – типично геологической особенности в форме кресла (например, впадины между горами, окруженной аретами ) – которая собирает и сжимает под действием силы тяжести снег, падающий в ледник. это. Этот снег накапливается, и вес падающего сверху снега уплотняет его, образуя неве (зернистый снег). Дальнейшее дробление отдельных снежинок и выдавливание из снега воздуха превращают его в «ледниковый лед». Этот ледниковый лед будет заполнять цирк до тех пор, пока не «переполнится» через геологическую слабость или пустоту, например, разрыв между двумя горами. Когда масса снега и льда достигает достаточной толщины, она начинает двигаться под действием наклона поверхности, силы тяжести и давления. На более крутых склонах это может произойти при толщине снежно-ледяного покрова всего 15 м (49 футов).

В ледниках умеренного пояса снег неоднократно замерзает и оттаивает, превращаясь в зернистый лед, называемый фирном . Под давлением слоев льда и снега над ним этот зернистый лед расплавляется в более плотный фирн. С годами слои фирна подвергаются дальнейшему уплотнению и превращаются в ледниковый лед. [21] Ледниковый лед немного более плотный, чем лед, образовавшийся из замерзшей воды, поскольку ледниковый лед содержит меньше пузырьков воздуха.

Ледниковый лед имеет характерный синий оттенок, поскольку он поглощает часть красного света из-за обертона инфракрасного растяжения ОН молекулы воды. (Жидкая вода кажется синей по той же причине. Голубой цвет ледникового льда иногда ошибочно приписывают рэлеевскому рассеянию пузырьков во льду.) [22]

Состав

Ледник черного льда недалеко от Аконкагуа , Аргентина.

Ледник берет свое начало в месте, называемом вершиной ледника, и заканчивается у подножия, рыла или конечной точки ледника .

Ледники разбиты на зоны в зависимости от поверхностного снежного покрова и условий таяния. [23] Зона абляции — это область, где происходит чистая потеря массы ледника. Верхняя часть ледника, где аккумуляция превышает абляцию, называется зоной аккумуляции . Линия равновесия разделяет зону абляции и зону накопления; это контур, на котором количество нового снега, полученного в результате накопления, равно количеству льда, потерянного в результате абляции. В целом зона аккумуляции занимает 60–70% площади поверхности ледника, а если ледник откалывает айсберги, то и больше. Лед в зоне аккумуляции достаточно глубок, чтобы оказывать нисходящую силу, разрушающую подстилающие породы. После таяния ледника он часто оставляет после себя впадину в форме чаши или амфитеатра, размер которой варьируется от больших бассейнов, таких как Великие озера, до небольших горных впадин, известных как цирки .

Зону аккумуляции можно подразделить по условиям ее плавления.

  1. Зона сухого снега — это регион, где не происходит таяния даже летом и снежный покров остается сухим.
  2. Зона просачивания – это область с некоторой поверхностной таянием, в результате чего талая вода просачивается в снежный покров. Эта зона часто отмечена линзами , железами и слоями перемерзшего льда . Снежный покров также никогда не достигает точки плавления.
  3. Вблизи линии равновесия на некоторых ледниках развивается зона наложенного льда. В этой зоне талая вода повторно замерзает в виде холодного слоя ледника, образуя сплошную массу льда.
  4. Зона влажного снега — это регион, где температура всего снега, выпавшего с конца предыдущего лета, достигла 0 °C.

Состояние ледника обычно оценивается путем определения баланса массы ледника или наблюдения за поведением конечной точки. Здоровые ледники имеют крупные зоны аккумуляции, более 60% их площади в конце сезона таяния покрыты снегом, имеют окончание с сильным течением.

После окончания малого ледникового периода примерно в 1850 году ледники вокруг Земли существенно отступили . Небольшое похолодание привело к наступлению многих альпийских ледников в период с 1950 по 1985 год, но с 1985 года отступление ледников и потеря массы стали более масштабными и повсеместно распространенными. [24] [25] [26]

Движение

Сдвиговые или елочные трещины на леднике Эммонс ( гора Рейнир ); такие трещины часто образуются вблизи края ледника, где взаимодействие с нижележащими или краевыми породами препятствует потоку. В этом случае препятствие оказывается на некотором расстоянии от ближнего края ледника.
Нависающий ледник наступающего ледника Уэббера с водопадами (район фьорда Боруп, Северный остров Элсмир). Слои, богатые обломками, были расколоты и сложены в базальный холодный ледник. Фронт ледника имеет ширину 6 км и высоту до 40 м. 20 июля 1978 г.,

Ледники движутся или текут вниз под действием силы тяжести и внутренней деформации льда. [27] Лед ведет себя как хрупкое твердое тело, пока его толщина не превысит примерно 50 м (160 футов). Давление на лед глубиной более 50 м вызывает пластическое течение . На молекулярном уровне лед состоит из сложенных друг на друга слоев молекул с относительно слабыми связями между слоями. Когда напряжение в слое выше превышает прочность связи между слоями, оно движется быстрее, чем слой ниже. [28]

Ледники также движутся посредством базального сползания . В этом процессе ледник скользит по местности, на которой он расположен, смазываясь наличием жидкой воды. Вода создается из льда, который тает под высоким давлением в результате фрикционного нагрева. Базальное сползание преобладает в ледниках умеренного или теплого основания.

Хотя доказательства в пользу ледникового потока были известны к началу 19 века, были выдвинуты и другие теории движения ледников, такие как идея о том, что талая вода, повторно замерзая внутри ледников, заставляла ледник расширяться и увеличивать свою длину. Когда стало ясно, что ледники ведут себя в некоторой степени так, как если бы лед был вязкой жидкостью, стали утверждать, что именно «релегелирование», или таяние и повторное замерзание льда при температуре, пониженной давлением на лед внутри ледника, было тем, что позволил льду деформироваться и течь. Джеймс Форбс предложил по существу правильное объяснение в 1840-х годах, хотя прошло несколько десятилетий, прежде чем оно было полностью принято. [29]

Зона разрушения и трещины

Трещины на леднике Титлис

Верхние 50 м (160 футов) ледника твердые, поскольку находятся под низким давлением . Эта верхняя часть известна как зона разрушения и движется в основном как единое целое над нижней частью с пластическим течением. Когда ледник движется по неровной местности, в зоне разлома образуются трещины, называемые трещинами . Трещины образуются из-за различий в скорости движения ледников. Если две твердые части ледника движутся с разными скоростями или направлениями, силы сдвига заставляют их распадаться, открывая трещину. Трещины редко имеют глубину более 46 м (150 футов), но в некоторых случаях могут иметь глубину не менее 300 м (1000 футов). Ниже этой точки пластичность льда предотвращает образование трещин. Пересекающиеся трещины могут образовывать отдельные вершины во льду, называемые сераками .

Трещины могут образовываться разными способами. Поперечные трещины расположены поперек потока и образуются там, где более крутые склоны заставляют ледник ускоряться. Продольные трещины образуют полупараллельные течения там, где ледник расширяется вбок. У края ледника образуются краевые трещины, вызванные снижением скорости из-за трения стенок долины. Краевые трещины в основном расположены поперек течения. Движущийся ледниковый лед иногда может отделяться от стоячего льда наверху, образуя бергшрунд . Бергшрунды напоминают трещины, но являются уникальными особенностями на окраинах ледника. Трещины делают путешествие по ледникам опасным, особенно когда они скрыты хрупкими снежными мостами .

Ниже линии равновесия талая ледниковая вода концентрируется в руслах ручьев. Талая вода может скапливаться в прогляциальных озерах на вершине ледника или спускаться в глубь ледника через мулены . Ручьи внутри или под ледником текут в ледниковых или подледниковых туннелях. Эти туннели иногда вновь выходят на поверхность ледника. [30]

Скорость

Скорость перемещения ледников частично определяется трением . Трение заставляет лед внизу ледника двигаться медленнее, чем лед наверху. В альпийских ледниках на боковых стенках долины также возникает трение, которое замедляет края относительно центра.

Средняя скорость ледников сильно варьируется, но обычно составляет около 1 м (3 фута) в день. [31] В застойных зонах движение может отсутствовать; например, в некоторых частях Аляски деревья могут прижиться на поверхностных отложениях отложений. В других случаях ледники могут перемещаться со скоростью 20–30 м (70–100 футов) в день, например, в гренландском Якобсхавне Исбре . На скорость ледников влияют такие факторы, как наклон, толщина льда, снегопад, продольная приуроченность, базальная температура, образование талой воды и твердость дна.

У некоторых ледников бывают периоды очень быстрого продвижения, называемые волнами . Эти ледники демонстрируют нормальное движение, пока внезапно не ускоряются, а затем возвращаются в предыдущее состояние движения. [32] Эти волны могут быть вызваны разрушением подстилающей породы, скоплением талой воды у подножия ледника [33]  — возможно, доставленной из надледникового озера  — или простым накоплением массы за пределами критического «переломного момента». . [34] Временные скорости до 90 м (300 футов) в день наблюдались, когда повышенная температура или вышележащее давление приводили к таянию придонного льда и скоплению воды под ледником.

В ледниковых районах, где ледник движется со скоростью более одного километра в год, происходят ледниковые землетрясения . Это крупномасштабные землетрясения с сейсмической магнитудой до 6,1. [35] [36] Число ледниковых землетрясений в Гренландии достигает максимума каждый год в июле, августе и сентябре и быстро увеличивается в 1990-х и 2000-х годах. В исследовании, в котором использовались данные с января 1993 года по октябрь 2005 года, каждый год, начиная с 2002 года, обнаруживалось больше событий, а в 2005 году было зарегистрировано вдвое больше событий, чем в любой другой год. [36]

Огивы

Группы Forbes на леднике Мер-де-Глас во Франции

Полосы Огива или Форбса [37] представляют собой чередующиеся гребни и впадины волн, которые выглядят как темные и светлые полосы льда на поверхности ледников. Они связаны с сезонным движением ледников; ширина одной темной и одной светлой полосы обычно равна годовому движению ледника. Огивы образуются, когда лед ледопада сильно разрушается, что увеличивает площадь поверхности абляции летом. Это создает трясину и пространство для скопления снега зимой, что, в свою очередь, создает гребень. [38] Иногда огивы состоят только из волнистости или цветных полос и описываются как волнообразные или ленточные огивы. [39]

География

Ледник Фокса в Новой Зеландии заканчивается возле тропического леса

Ледники имеются на всех континентах и ​​примерно в пятидесяти странах, за исключением тех (Австралия, Южная Африка), где ледники имеются только на отдаленных субантарктических островных территориях. Обширные ледники встречаются в Антарктиде, Аргентине, Чили, Канаде, Аляске, Гренландии и Исландии. Горные ледники широко распространены, особенно в Андах , Гималаях , Скалистых горах , на Кавказе , в Скандинавских горах , в Альпах . Ледник Снежника в горе Пирин , Болгария , на 41°46′09″ северной широты является самым южным ледниковым массивом в Европе. [40] Материковая часть Австралии в настоящее время не содержит ледников, хотя небольшой ледник на горе Костюшко присутствовал в последний ледниковый период . [41] В Новой Гвинее небольшие, быстро тающие ледники расположены на Пунчак-Джая . [42] В Африке есть ледники на горе Килиманджаро в Танзании, на горе Кения и в горах Рувензори . Океанические острова с ледниками включают Исландию, несколько островов у побережья Норвегии, включая Шпицберген и Ян-Майен на крайнем севере, Новую Зеландию и субантарктические острова Марион , Херд , Гранд-Тер (Кергелен) и Буве . Во время ледниковых периодов четвертичного периода Тайвань , Гавайи на Мауна-Кеа [43] и Тенерифе также имели крупные альпийские ледники, тогда как Фарерские острова и острова Крозе [44] были полностью покрыты льдом.

На постоянный снежный покров, необходимый для образования ледников, влияют такие факторы, как степень уклона суши, количество снегопадов и ветры. Ледники можно найти на всех широтах , кроме 20–27 ° к северу и югу от экватора, где наличие нисходящего крыла циркуляции Хэдли снижает количество осадков настолько, что при высокой инсоляции снеговые линии достигают высоты более 6500 м (21 330 футов). Однако между 19˚N и 19˚S количество осадков выше, а в горах на высоте выше 5000 м (16 400 футов) обычно лежит постоянный снег.

Даже в высоких широтах образование ледников не является неизбежным. Районы Арктики , такие как остров Бэнкс и Сухие долины Мак-Мердо в Антарктиде, считаются полярными пустынями , где ледники не могут образовываться, поскольку там выпадает мало снега, несмотря на сильный холод. Холодный воздух, в отличие от теплого, не способен переносить большое количество водяного пара. Даже во время ледниковых периодов четвертичного периода в Маньчжурии , равнинной Сибири , [45] и центральной и северной Аляске , [46] хотя и было необычайно холодно, выпадал такой слабый снегопад, что ледники не могли образовываться. [47] [48]

Помимо засушливых, не покрытых ледником полярных регионов, некоторые горы и вулканы в Боливии, Чили и Аргентине высокие (от 4500 до 6900 м или от 14 800 до 22 600 футов) и холодные, но относительное отсутствие осадков предотвращает накопление снега в ледниках. Это связано с тем, что эти вершины расположены вблизи гиперзасушливой пустыни Атакама или в ней .

Ледниковая геология

Схема ледникового выщипывания и истирания

Ледники разрушают местность посредством двух основных процессов: выщипывания и истирания . [49]

Когда ледники текут по коренной породе, они размягчаются и поднимают глыбы породы в лед. Этот процесс, называемый выщипыванием, вызывается подледниковой водой, которая проникает в трещины коренной породы, а затем замерзает и расширяется. [50] Это расширение заставляет лед действовать как рычаг, который ослабляет скалу, поднимая ее. Таким образом, отложения всех размеров становятся частью ледниковой нагрузки. Если отступающий ледник накопит достаточно мусора, он может превратиться в каменный ледник , как ледник Тимпаногос в штате Юта.

Истирание происходит, когда лед и его фрагменты горных пород скользят по коренной породе [50] и действуют как наждачная бумага, сглаживая и полируя коренную породу внизу. Измельченная порода, получаемая в результате этого процесса, называется каменной мукой и состоит из зерен породы размером от 0,002 до 0,00625 мм. Абразия приводит к образованию более крутых стен долин и горных склонов в альпийских условиях, что может вызвать лавины и оползни, которые добавляют в ледник еще больше материала. Ледниковая абразия обычно характеризуется ледниковыми полосами . Ледники производят их, когда содержат большие валуны, которые оставляют длинные царапины в скале. Составляя карту направления полос, исследователи могут определить направление движения ледника. Похожими на бороздки являются следы вибраций — линии серповидных углублений в скале, подстилающей ледник. Они образуются в результате абразии, когда валуны ледника неоднократно захватываются и высвобождаются по мере того, как они тянутся по коренной породе.

Ледниковая гранитная порода возле Мариехамна , Аландские острова

Скорость ледниковой эрозии варьируется. Шесть факторов контролируют скорость эрозии:

Когда коренная порода имеет частые трещины на поверхности, скорость ледниковой эрозии имеет тенденцию увеличиваться, поскольку основной эрозионной силой на поверхности является выщипывание; Однако когда в коренной породе имеются широкие промежутки между спорадическими трещинами, преобладающей эрозионной формой становится абразия, и скорость ледниковой эрозии замедляется. [51] Ледники в более низких широтах, как правило, гораздо более эрозионны, чем ледники в более высоких широтах, потому что они содержат больше талой воды, достигающей ледникового основания, и способствуют образованию и транспортировке отложений при той же скорости движения и количестве льда. [52]

Материал, который включается в ледник, обычно доносится до зоны абляции перед отложением. Ледниковые отложения делятся на два типа:

Более крупные куски породы, покрытые коркой или отложившиеся на поверхности, называются « ледниковыми отложениями ». По размеру они варьируются от гальки до валунов, но, поскольку их часто перемещают на большие расстояния, они могут кардинально отличаться от материала, на котором они найдены. Образцы ледниковых неровностей намекают на движение ледников в прошлом.

Морены

Ледниковые морены над озером Луиза , Альберта, Канада

Ледниковые морены образуются в результате отложения материала ледника и обнажаются после отступления ледника. Обычно они выглядят как линейные насыпи из тилла , несортированной смеси камней, гравия и валунов внутри матрицы мелкого порошкообразного материала. Конечные или концевые морены образуются у подножия или конечного конца ледника. По бокам ледника образуются боковые морены. Медиальные морены образуются, когда два разных ледника сливаются, а боковые морены каждого сливаются, образуя морену в середине объединенного ледника. Менее заметны донные морены , также называемые ледниковыми дрейфами , которые часто покрывают поверхность под ледником, спускающимся по склону от линии равновесия. Термин морена имеет французское происхождение. Он был придуман крестьянами для описания аллювиальных насыпей и кромок, найденных по краям ледников во французских Альпах . В современной геологии этот термин используется более широко и применяется к ряду формаций, каждая из которых состоит из тилла. Морены также могут образовывать озера с моренными запрудами.

Друмлины

Друмлины вокруг Хорикон Марш , штат Висконсин, в районе с одной из самых высоких концентраций друмлинов в мире. Изогнутая траектория Лаврентидского ледникового щита очевидна в ориентации различных курганов.

Друмлины — это асимметричные холмы в форме каноэ, состоящие в основном из тилла. Их высота варьируется от 15 до 50 метров, а в длину они могут достигать километра. Самая крутая сторона холма обращена в сторону продвижения льда ( стосс ), а более длинный склон остается в направлении движения льда ( подветренная сторона ). Друмлины встречаются группами, называемыми полями друмлинов или лагерями друмлинов . Одно из этих месторождений находится к востоку от Рочестера, штат Нью-Йорк ; по оценкам, в нем содержится около 10 000 друмлинов. Хотя процесс образования друмлинов до конца не изучен, их форма предполагает, что они являются продуктами зоны пластической деформации древних ледников. Считается, что многие друмлины образовались, когда ледники наступили и изменили отложения более ранних ледников.

Ледниковые долины, цирки, ареты и пирамидальные вершины.

Особенности ледникового ландшафта

До оледенения горные долины имели характерную V-образную форму , образовавшуюся в результате водной эрозии. Во время оледенения эти долины часто расширяются, углубляются и сглаживаются, образуя U-образную ледниковую долину или ледниковую впадину, как ее иногда называют. [53] Эрозия, которая создает ледниковые долины, усекает любые отроги камня или земли, которые могли ранее простираться по долине, создавая скалы широко треугольной формы, называемые усеченными отрогами . В ледниковых долинах впадины, образовавшиеся в результате выщипывания и абразии, могут быть заполнены озерами, называемыми патерностерскими озерами . Если ледниковая долина впадает в большой водоем, она образует фьорд .

Обычно ледники углубляют свои долины больше, чем их более мелкие притоки . Поэтому при отступлении ледников долины притоков ледников остаются над впадиной главного ледника и называются висячими долинами .

В начале классического долинного ледника находится цирк в форме чаши, стены которого имеют откосы с трех сторон, но открыты на той стороне, которая спускается в долину. Цирки — это места, где лед начинает накапливаться в леднике. Два ледниковых цирка могут образоваться один за другим и разрушить их задние стенки, пока не останется только узкий гребень, называемый аретой . Эта структура может привести к горному перевалу . Если несколько цирков окружают одну гору, они образуют заостренные пирамидальные вершины ; особо крутые примеры называются рогами .

Мутоне Рош

Прохождение ледникового льда над участком коренной породы может привести к тому, что скала превратится в холм, называемый roche moutonnée , [54] или «овчарной» скалой. Мутонне Roches могут быть удлиненными, округлыми и асимметричными по форме. Их длина варьируется от менее метра до нескольких сотен метров. [55] Мутонне Роша имеют пологий склон на верхних сторонах ледника и крутую или вертикальную поверхность на нижних сторонах ледника. По мере своего течения ледник стирает гладкий склон на стороне верхнего течения, но отрывает обломки породы и уносит их с нижней стороны путем выщипывания.

Аллювиальная слоистость

По мере удаления от ледника вода, поднимающаяся из зоны абляции, уносит с собой мелкие размытые отложения. По мере уменьшения скорости воды уменьшается и ее способность переносить объекты во взвешенном состоянии. Таким образом, вода постепенно откладывает осадок по мере своего течения, создавая аллювиальную равнину . Когда это явление происходит в долине, его называют поездом долины . Когда отложения происходят в устье реки , осадки известны как заливная грязь . Равнины и долины обычно сопровождаются бассейнами, известными как « котлы ». Это небольшие озера, образующиеся в результате таяния крупных ледяных глыб, попавших в аллювий, и образования впадин, заполненных водой. Диаметр котлов варьируется от 5 м до 13 км, глубина до 45 метров. Большинство из них имеют круглую форму, потому что образовавшие их глыбы льда округлялись при таянии. [56]

Ледниковые отложения

Пейзаж, созданный отступающим ледником

Когда размер ледника уменьшается ниже критической точки, его течение прекращается и он становится стационарным. Между тем, талая вода внутри и подо льдом оставляет слоистые аллювиальные отложения. Эти отложения в виде колонн, террас и скоплений остаются после таяния ледника и известны как « ледниковые отложения ». Ледниковые отложения, имеющие форму холмов или курганов, называются камами . Некоторые камы образуются, когда талая вода откладывает осадки через отверстия во внутренней части льда. Другие образуются веерами или дельтами , созданными талой водой. Когда ледниковый лед занимает долину, он может образовывать террасы или камы по бокам долины. Длинные извилистые ледниковые отложения называются озами . Эскеры состоят из песка и гравия, отложенных потоками талой воды, протекавшими через ледяные туннели внутри или под ледником. Они остаются после таяния льда, их высота превышает 100 метров, а длина — до 100 км.

Лёссовые отложения

Очень мелкие ледниковые отложения или каменная мука [57] часто подхватываются ветром, дующим над голой поверхностью, и могут откладываться на больших расстояниях от первоначального места речных отложений. Эти отложения эолового лёсса могут быть очень глубокими, даже на сотни метров, как в районах Китая и Среднего Запада США . В этом процессе важную роль могут сыграть стоковые ветры .

Изменение климата

Ледники, возраст которых может достигать сотен тысяч лет, используются для отслеживания изменения климата в течение длительных периодов времени. [59] Исследователи плавят или измельчают образцы ледниковых кернов , чьи все более глубокие слои представляют соответственно более ранние периоды в истории климата Земли. [59] Исследователи применяют различные инструменты к содержимому пузырьков, попавших в слои ядер, чтобы отслеживать изменения в составе атмосферы. [59] Температуры рассчитываются на основе различных относительных концентраций соответствующих газов, что подтверждает, что, по крайней мере, в течение последнего миллиона лет глобальные температуры были связаны с концентрацией углекислого газа . [59]

Деятельность человека в индустриальную эпоху привела к увеличению концентрации углекислого газа и других парниковых газов, удерживающих тепло , в воздухе, что привело к нынешнему глобальному потеплению . [60] Человеческое влияние является основной движущей силой изменений в криосфере , частью которой являются ледники. [60]

Ледяная лагуна Ёкульсарлон у подножия ледника Ватнайёкюдль , Исландия , 2023 год.

Глобальное потепление создает положительную обратную связь с ледниками. [61] Например, в результате обратной связи между льдом и альбедо повышение температуры увеличивает таяние ледников, обнажая большую часть земной суши и морской поверхности (которая темнее, чем ледниковый лед), позволяя солнечному свету нагревать поверхность, а не отражаться обратно в космос. [61] Эталонные ледники, отслеживаемые Всемирной службой мониторинга ледников, теряют лед каждый год, начиная с 1988 года . [62] Индикатором потери ледников является День потери ледников .

Сток воды от таяния ледников приводит к повышению уровня мирового океана – явление, которое МГЭИК называет явлением с «медленным началом». [63] Воздействия, по крайней мере частично связанные с повышением уровня моря, включают вторжение на прибрежные поселения и инфраструктуру, увеличение численности населения, населяющего 100-летние прибрежные зоны затопления, экзистенциальные угрозы для малых островов и низменных побережий, сокращение прибрежных рыбных ресурсов, потери прибрежные экосистемы и экосистемные услуги, засоление грунтовых вод, повышенные риски для прибрежной продовольственной и водной безопасности, а также усугубляющийся ущерб от тропических циклонов, наводнений, штормовых нагонов и оседания земель. [63]

Изостатический отскок

Изостатическое давление ледника на земную кору

Большие массы, такие как ледяные щиты или ледники, могут вдавливать земную кору в мантию. [64] Депрессия обычно составляет треть толщины ледникового щита или ледника. После таяния ледникового покрова или ледника мантия начинает возвращаться в исходное положение, подталкивая кору обратно вверх. Этот постледниковый отскок , который происходит очень медленно после таяния ледникового щита или ледника, в настоящее время в измеримых количествах происходит в Скандинавии и районе Великих озер Северной Америки.

Геоморфологическая особенность, созданная тем же процессом в меньшем масштабе, известна как разлом расширения . Это происходит там, где ранее сжатой породе позволяют вернуться в свою первоначальную форму быстрее, чем можно сохранить без разломов. Это приводит к эффекту, подобному тому, который можно было бы наблюдать, если бы по камню ударили большим молотком. Разломы расширения можно наблюдать в недавно открывшихся ледниковых районах Исландии и Камбрии.

На других планетах

Protonilus Mensae , Четырехугольник Исмениуса Лака , Марс

Полярные ледяные шапки Марса демонстрируют геологические свидетельства ледниковых отложений. Южная полярная шапка особенно сравнима с ледниками на Земле. [65] Топографические особенности и компьютерные модели указывают на существование большего количества ледников в прошлом Марса. [66] В средних широтах, между 35° и 65° северной или южной широты, на марсианские ледники влияет тонкая марсианская атмосфера. Из-за низкого атмосферного давления абляция вблизи поверхности вызвана исключительно сублимацией , а не плавлением . Как и на Земле, многие ледники покрыты слоем камней, изолирующим лед. Радарный прибор на борту Mars Reconnaissance Orbiter обнаружил лед под тонким слоем камней в образованиях, называемых лопастными фартуками обломков (LDA). [67] [68] [69]

В 2015 году, когда «Новые горизонты» пролетали мимо системы Плутон - Харон , космический корабль обнаружил на Плутоне массивный бассейн, покрытый слоем азотного льда. Большая часть поверхности бассейна разделена на неправильные многоугольные образования, разделенные узкими впадинами, которые интерпретируются как конвекционные ячейки, питаемые внутренним теплом недр Плутона. [70] [71] Ледниковые потоки также наблюдались вблизи окраин Sputnik Planitia, которые, по-видимому, текли как в бассейн, так и из него. [72]

Смотрите также

Рекомендации

  1. ^ Карты Google: Расстояние между Вильдшпитце и Хинтерером-Брохкогелем, ср. масштаб изображения у нижнего края экрана
  2. ^ Пост, Остин; ЛаШапель, Эдвард Р. (2000). Ледниковый лед . Сиэтл: Вашингтонский университет Press. ISBN 978-0-295-97910-6.
  3. Персонал (9 июня 2020 г.). «Миллионы людей подвергаются риску, поскольку таяние ледников Пакистана вызывает опасения наводнений». Аль-Джазира . Проверено 9 июня 2020 г.
  4. ^ Крейг, Тим (12 августа 2016 г.). «В Пакистане больше ледников, чем где-либо на Земле. Но они находятся под угрозой». Вашингтон Пост . ISSN  0190-8286 . Проверено 4 сентября 2020 г. Согласно различным исследованиям, с учетом 7253 известных ледников, в том числе 543 в долине Читрал, в Пакистане больше ледникового льда, чем где-либо на Земле за пределами полярных регионов.
  5. ^ Географический альманах National Geographic, 2005, ISBN 0-7922-3877-X , стр. 149. 
  6. ^ "170 000 км куба воды в ледниках мира" . АркИнфо . 6 августа 2015 г. Архивировано из оригинала 17 августа 2017 г.
  7. ^ «Лед, снег, ледники и круговорот воды». www.usgs.gov . Проверено 25 мая 2021 г.
  8. ^ Браун, Молли Элизабет; Оуян, Хуа; Хабиб, Шахид; Шреста, Басанта; Шреста, Мандира; Пандай, Праджвал; Цорциу, Мария; Поличелли, Фредерик; Артан, Гулейд; Гирирадж, Амарнатх; Баджрачарья, Сагар Р.; Раковитеану, Адина (ноябрь 2010 г.). «ГИМАЛА: Влияние климата на ледники, снег и гидрологию в Гималайском регионе». Горные исследования и разработки . Международное горное общество. 30 (4): 401–404. doi : 10.1659/MRD-JOURNAL-D-10-00071.1 . hdl : 2060/20110015312 . S2CID  129545865.
  9. ^ Симпсон, ДП (1979). Латинский словарь Касселла (5-е изд.). Лондон: Cassell Ltd., с. 883. ИСБН 978-0-304-52257-6.
  10. ^ «Глоссарий ледниковой терминологии». Геологическая служба США . Проверено 13 марта 2017 г.
  11. ^ "Отступление ледника Аляски, ледяное поле Джуно" . Николс.edu. Архивировано из оригинала 23 октября 2017 г. Проверено 5 января 2009 г.
  12. ^ «Глоссарий метеорологии». Американское метеорологическое общество. Архивировано из оригинала 23 июня 2012 г. Проверено 4 января 2013 г.
  13. ^ Университет Висконсина , факультет географии и геологии (2015). «Морфологическая классификация ледников» (PDF) . www.uwsp.edu/Pages/default.aspx . Архивировано (PDF) из оригинала 12 августа 2017 г.
  14. ^ «Уровень моря и климат». Геологическая служба США ФС 002-00 . Геологическая служба США . 31 января 2000 г. Проверено 5 января 2009 г.
  15. ^ «Типы ледников». nsidc.org . Национальный центр данных по снегу и льду . Архивировано из оригинала 17 апреля 2010 г.
  16. ^ Биндшадлер, РА; Скамбос, Т.А. (1991). «Поле скорости антарктического ледяного потока, полученное по спутниковым изображениям». Наука . 252 (5003): 242–46. Бибкод : 1991Sci...252..242B. дои : 10.1126/science.252.5003.242. PMID  17769268. S2CID  17336434.
  17. ^ «Описание ледяных потоков». Британская антарктическая служба . Архивировано из оригинала 11 февраля 2009 г. Проверено 26 января 2009 г.
  18. ^ «Какие типы ледников существуют?». nsidc.org . Национальный центр данных по снегу и льду . Проверено 12 августа 2017 г.
  19. ^ аб Лоррен, Реджинальд Д.; Фицсаймонс, Шон Дж. (2011). «Холодные ледники». Ин Сингх, Виджай П.; Сингх, Пратап; Хариташья, Умеш К. (ред.). Энциклопедия снега, льда и ледников . Серия Энциклопедия наук о Земле. Спрингер Нидерланды. стр. 157–161. дои : 10.1007/978-90-481-2642-2_72. ISBN 978-90-481-2641-5.
  20. ^ Бултон, Г.С. [1974] «Процессы и закономерности ледниковой эрозии», (В издании Коутса, доктора медицинских наук, Ледниковая геоморфология . Сборник статей пятой ежегодной серии симпозиумов по геоморфологии, проходивших в Бингемтоне, Нью-Йорк, 26–28 сентября, 1974. Бингемтон, Нью-Йорк, Государственный университет Нью-Йорка, стр. 41–87 (Публикации по геоморфологии))
  21. ^ Huggett 2011, стр. 260–262, Ледниковые и речные ледниковые ландшафты.
  22. ^ «Что вызывает синий цвет, который иногда появляется на снегу и льду?». Webexhibits.org . Проверено 4 января 2013 г.
  23. ^ Бенсон, CS, 1961, «Стратиграфические исследования снега и фирна Гренландского ледникового щита», Res. Rep. 70 , Служба спасения снега, льда и вечной мерзлоты армии США, Английский корпус, 120 стр.
  24. ^ «Изменение ледников и связанные с этим опасности в Швейцарии». ЮНЕП. Архивировано из оригинала 25 сентября 2012 г. Проверено 5 января 2009 г.
  25. ^ Пол, Фрэнк; Кааб, Андреас; Майш, Макс; Келленбергер, Тобиас; Хэберли, Вильфрид (2004). «Быстрый распад альпийских ледников наблюдался по спутниковым данным» (PDF) . Письма о геофизических исследованиях . 31 (21): L21402. Бибкод : 2004GeoRL..3121402P. дои : 10.1029/2004GL020816 . Архивировано (PDF) из оригинала 4 июня 2007 г.
  26. ^ «Обзор недавнего глобального отступления ледников» (PDF) . Проверено 4 января 2013 г.
  27. ^ Греве, Р.; Блаттер, Х. (2009). Динамика ледниковых щитов и ледников . Спрингер. дои : 10.1007/978-3-642-03415-2. ISBN 978-3-642-03414-5. S2CID  128734526.
  28. ^ WSB Патерсон, Физика льда
  29. ^ Кларк, Гарри КС (1987). «Краткая история научных исследований ледников». Журнал гляциологии . Спецвыпуск (S1): 4–5. Бибкод : 1987JGlac..33S...4C. дои : 10.3189/S0022143000215785 .
  30. ^ «Мулен 'Блан': Экспедиция НАСА исследует глубь ледника Гренландии» . НАСА . 11 декабря 2006 г. Архивировано из оригинала 4 ноября 2012 г. Проверено 5 января 2009 г.
  31. ^ «Ледники». www.geo.hunter.cuny.edu . Архивировано из оригинала 22 февраля 2014 г. Проверено 6 февраля 2014 г.
  32. ^ Т. Строцци и др.: Эволюция ледникового набега, наблюдаемая с помощью спутников ERS. Архивировано 11 ноября 2014 г. на Wayback Machine (pdf, 1,3 МБ).
  33. ^ «Проект Бруарйокудль: Осадочная среда пульсирующего ледника. Исследовательская идея проекта Бруарйокудль» . Привет . Проверено 4 января 2013 г.
  34. ^ Мейер и Пост (1969)
  35. ^ «Сезонность и увеличение частоты ледниковых землетрясений в Гренландии». Архивировано 7 октября 2008 г. в Wayback Machine , Экстрем, Г., М. Неттлс и В.К. Цай (2006) Science , 311, 5768, 1756–1758, doi : 10.1126. /science.1122112
  36. ^ ab «Анализ ледниковых землетрясений». Архивировано 7 октября 2008 г. в Wayback Machine Цай, В.К. и Г. Экстрем (2007). Дж. Геофиз. Рез., 112, F03S22, doi :10.1029/2006JF000596
  37. ^ Саммерфилд, Майкл А. (1991). Глобальная геоморфология . п. 269.
  38. ^ Истербрук, ди-джей (1999). Поверхностные процессы и формы рельефа (2-е изд.). Нью-Джерси: Prentice-Hall , Inc., с. 546. ИСБН 978-0-13-860958-0.
  39. ^ «Глоссарий ледниковой терминологии». Pubs.usgs.gov. 20 июня 2012 г. Проверено 4 января 2013 г.
  40. ^ Грюневальд, с. 129.
  41. ^ "CD Оллиер: Австралийские формы рельефа и их история, Национальная картографическая лаборатория, Геофизические науки Австралии" . Ga.gov.au. 18 ноября 2010 г. Архивировано из оригинала 8 августа 2008 г. Проверено 4 января 2013 г.
  42. ^ Кинкейд, Джони Л.; Кляйн, Эндрю Г. (2004). Отступление ледников Ириан-Джая с 2000 по 2002 год по данным спутниковых изображений IKONOS (PDF) . Портленд, Мэн, США. стр. 147–157. Архивировано из оригинала (PDF) 17 мая 2017 г. Проверено 5 января 2009 г.
  43. ^ «Гавайские ледники открывают ключ к глобальному изменению климата». Геология.com. 26 января 2007 г. Архивировано из оригинала 27 января 2013 г. Проверено 4 января 2013 г.
  44. ^ «Французские колонии - Архипелаг Крозе». Discoverfrance.net. 09.12.2010 . Проверено 4 января 2013 г.
  45. ^ Коллинз, Генри Хилл. Европа и СССР . п. 263. ОСЛК  1573476.
  46. ^ "Интерпретационный центр Юкон-Берингия" . Берингия.com. 12 апреля 1999 г. Архивировано из оригинала 31 октября 2012 г. Проверено 4 января 2013 г.
  47. ^ «История Земли 2001» (PDF) . 28 июля 2017. с. 15. Архивировано из оригинала (PDF) 3 марта 2016 года . Проверено 28 июля 2017 г.
  48. ^ «К зоогеографии Голарктики». Wku.edu . Проверено 4 января 2013 г.
  49. ^ Huggett 2011, стр. 263–264, Ледниковые и речные ледниковые ландшафты.
  50. ^ ab Huggett 2011, с. 263, Ледниковые и флювиально-ледниковые ландшафты.
  51. ^ Дюнфорт, Мириам; Андерсон, Роберт С.; Уорд, Дилан; Сток, Грег М. (01 мая 2010 г.). «Контроль разрушения коренных пород, процессов и скорости ледниковой эрозии». Геология . 38 (5): 423–426. Бибкод : 2010Geo....38..423D. дои : 10.1130/G30576.1. ISSN  0091-7613.
  52. ^ Коппес, Мишель; Халлет, Бернар; Риньо, Эрик; Мужино, Жереми; Веллнер, Джулия Смит; Болдт, Кэтрин (2015). «Наблюдаемые широтные изменения эрозии в зависимости от динамики ледников». Природа . 526 (7571): 100–103. Бибкод : 2015Natur.526..100K. дои : 10.1038/nature15385. PMID  26432248. S2CID  4461215.
  53. ^ «Ледниковые формы рельефа: желоб». nsidc.org . Национальный центр данных по снегу и льду .
  54. ^ Huggett 2011, стр. 271, Ледниковые и флювиально-ледниковые ландшафты.
  55. ^ Бенн, Дуглас; Эванс, Дэвид (1998). Ледники и оледенение . Лондон: Арнольд. стр. 324–326.
  56. ^ "Чайниковая геология" . Британика Онлайн . Проверено 12 марта 2009 г.
  57. ^ Хаггетт 2011, с. 264, Ледниковые и флювиально-ледниковые ландшафты.
  58. ^ Раунс, Дэвид Р.; Хок, Регина; Моссион, Фабьен; Югонне, Ромен; и другие. (5 января 2023 г.). «Глобальное изменение ледников в 21 веке: любое повышение температуры имеет значение». Наука . 379 (6627): 78–83. Бибкод : 2023Sci...379...78R. дои : 10.1126/science.abo1324. PMID  36603094. S2CID  255441012.
  59. ↑ abcd Дасто, Эми (28 января 2023 г.). «Климат в ядре: как ученые изучают ледяные керны, чтобы раскрыть историю климата Земли». Climate.gov . Национальное управление океанографии и атмосферы (НОАА). Архивировано из оригинала 28 января 2023 года.Рецензия Эриха Остерберга и Дэвида Андерсона. Применяемые приборы: масс-спектрометры , сканирующие электронные микроскопы и газовые хроматографы .
  60. ^ ab «Причины изменения климата». Climate.nasa.gov . НАСА. 2019. Архивировано из оригинала 21 декабря 2019 г.
  61. ^ аб Вундерлинг, Нико; Виллейт, Маттео; Донж, Джонатан Ф.; Винкельманн, Рикарда (27 октября 2020 г.). «Глобальное потепление из-за потери больших ледяных масс и летнего морского льда в Арктике». Природные коммуникации . 11 (1): 5177. Бибкод : 2020NatCo..11.5177W. дои : 10.1038/s41467-020-18934-3. ПМЦ 7591863 . ПМИД  33110092. Источник упоминает обратные связи об альбедо льда и высоте таяния.
  62. ^ «Глобальное состояние ледников». Всемирная служба мониторинга ледников («под эгидой: ISC (WDS), IUGG (IACS), ООН по окружающей среде, ЮНЕСКО, ВМО»). Январь 2023 г. Архивировано из оригинала 29 января 2023 г.См. диаграмму на Викимедиа .
  63. ^ ab «Резюме РГ II МГЭИК AR6 для политиков» (PDF) . ipcc.ch. _ Межправительственная группа экспертов по изменению климата (МГЭИК). 2022. Архивировано (PDF) из оригинала 22 января 2023 года.
  64. ^ Каспер, Джули Керр (2010). Циклы глобального потепления: ледниковые периоды и отступление ледников. Издательство информационной базы. ISBN 978-0-8160-7262-0– через Google Книги .
  65. ^ «Каргель, Дж. С. и др.: Марсианские полярные ледяные щиты и ледники средних широт, богатые обломками, и земные аналоги, Третья международная конференция по полярной науке и исследованию Марса, Альберта, Канада, 13–17 октября 2003 г. (pdf 970 КБ) )» (PDF) . Архивировано (PDF) из оригинала 27 февраля 2008 г. Проверено 4 января 2013 г.
  66. ^ «Марсианские ледники: возникли ли они из атмосферы? ESA Mars Express, 20 января 2006 г.». Esa.int. 20 января 2006 г. Проверено 4 января 2013 г.
  67. ^ Хэд, Дж. и др. 2005. Накопление, течение и оледенение снега и льда в тропических и средних широтах на Марсе. Природа: 434. 346–350.
  68. ^ Плаут, Дж. и др. 2008. Радиолокационные доказательства наличия льда в лопастных фартуках обломков в среднесеверных широтах Марса. Лунная и планетарная наука XXXIX. 2290.pdf
  69. ^ Холт, Дж. и др. 2008. Радиолокационное зондирование свидетельствует о наличии льда в лопастных фартуках обломков возле бассейна Эллады, средние южные широты Марса. Лунная и планетарная наука XXXIX. 2441.pdf
  70. Лакдавалла, Эмили (21 декабря 2015 г.). «Обновления о Плутоне от AGU и DPS: красивые картинки из запутанного мира». Планетарное общество . Проверено 24 января 2016 г.
  71. ^ Маккиннон, ВБ; и другие. (1 июня 2016 г.). «Конвекция в нестабильном слое, богатом азотом, льдом обеспечивает геологическую активность Плутона». Природа . 534 (7605): 82–85. arXiv : 1903.05571 . Бибкод :2016Natur.534...82M. дои : 10.1038/nature18289. PMID  27251279. S2CID  30903520.
  72. ^ Умурхан, О. (8 января 2016 г.). «Исследование загадочного ледникового потока на замерзшем «сердце» Плутона». blogs.nasa.gov . НАСА . Проверено 24 января 2016 г.

Библиография

Общие ссылки

дальнейшее чтение

Внешние ссылки