stringtranslate.com

Рэй (оптика)

Лучи и волновые фронты

В оптике луч — это идеализированная геометрическая модель света или другого электромагнитного излучения , полученная путем выбора кривой , которая перпендикулярна волновым фронтам фактического света и указывает в направлении потока энергии . [1] [2] Лучи используются для моделирования распространения света через оптическую систему путем разделения реального светового поля на дискретные лучи, которые можно вычислительно распространять через систему с помощью методов трассировки лучей . Это позволяет математически анализировать или моделировать с помощью компьютера даже очень сложные оптические системы. Трассировка лучей использует приближенные решения уравнений Максвелла , которые действительны до тех пор, пока световые волны распространяются через и вокруг объектов, размеры которых намного превышают длину волны света . Лучевая оптика или геометрическая оптика не описывает такие явления, как дифракция , которые требуют теории волновой оптики . Некоторые волновые явления, такие как интерференция, в ограниченных случаях можно смоделировать, добавив фазу в лучевую модель.

Определение

Луч света — это линия ( прямая или изогнутая ), перпендикулярная волновым фронтам света ; ее касательная коллинеарна волновому вектору . Лучи света в однородных средах прямые. Они изгибаются на границе раздела двух разнородных сред и могут искривляться в среде, в которой изменяется показатель преломления . Геометрическая оптика описывает, как лучи распространяются через оптическую систему. Объекты, подлежащие изображению, рассматриваются как совокупность независимых точечных источников, каждый из которых создает сферические волновые фронты и соответствующие исходящие лучи. Лучи от каждой точки объекта можно математически распространить, чтобы найти соответствующую точку на изображении.

Несколько более строгое определение светового луча следует из принципа Ферма , который гласит, что путь, пройденный лучом света между двумя точками, — это путь, который можно пройти за наименьшее время. [3]

Специальные лучи

Существует множество специальных лучей, которые используются при оптическом моделировании для анализа оптической системы. Они определены и описаны ниже, сгруппированы по типу системы, для моделирования которой они используются.

Взаимодействие с поверхностями

Схема лучей на поверхности, где – угол падения , – угол отражения , – угол преломления .

Оптические системы

Простая лучевая диаграмма, показывающая типичные главные и краевые лучи.

Волоконная оптика

Геометрическая оптика

Геометрическая оптика , или лучевая оптика, — это модель оптики , описывающая распространение света в терминах лучей . Луч в геометрической оптике — это абстракция , полезная для аппроксимации путей, по которым распространяется свет при определенных обстоятельствах.

Упрощающие предположения геометрической оптики включают в себя то, что световые лучи:

  • распространяются по прямолинейным траекториям при движении в однородной среде
  • изгибаться, а при определенных обстоятельствах может разделиться на две части на границе двух разнородных сред
  • следовать изогнутым траекториям в среде, в которой изменяется показатель преломления
  • может поглощаться или отражаться.
Геометрическая оптика не учитывает некоторые оптические эффекты, такие как дифракция и интерференция . Это упрощение полезно на практике; это отличное приближение, когда длина волны мала по сравнению с размером структур, с которыми взаимодействует свет. Эти методы особенно полезны при описании геометрических аспектов изображений , включая оптические аберрации .

трассировка лучей

В физике трассировка лучей — это метод расчета пути волн или частиц через систему с областями различной скорости распространения , характеристиками поглощения и отражающими поверхностями. В этих обстоятельствах волновые фронты могут изгибаться, менять направление или отражаться от поверхностей, что усложняет анализ. Трассировка лучей решает проблему, многократно продвигая через среду идеализированные узкие лучи, называемые лучами, на дискретные величины. Простые проблемы можно проанализировать, распространяя несколько лучей, используя простую математику. Более детальный анализ можно выполнить, используя компьютер для распространения множества лучей.

Применительно к проблемам электромагнитного излучения трассировка лучей часто опирается на приближенные решения уравнений Максвелла , которые действительны до тех пор, пока световые волны распространяются через и вокруг объектов, размеры которых намного превышают длину волны света . Теория лучей не описывает такие явления, как интерференция и дифракция , для которых требуется волновая теория (с учетом фазы волны).

Смотрите также

Рекомендации

  1. Мур, Кен (25 июля 2005 г.). «Что такое луч?». База знаний пользователей ZEMAX . Проверено 30 мая 2008 г.
  2. ^ Грейвенкамп, Джон Э. (2004). Полевое руководство по геометрической оптике . Полевые руководства SPIE. п. 2. ISBN 0819452947.
  3. ^ Артур Шустер , Введение в теорию оптики , Лондон: Эдвард Арнольд, 1904 г., онлайн.
  4. ^ abcd Стюарт, Джеймс Э. (1996). Оптические принципы и технологии для инженеров . КПР. п. 57. ИСБН 978-0-8247-9705-8.
  5. ^ аб Грейвенкамп, Джон Э. (2004). Полевое руководство по геометрической оптике . Полевые руководства SPIE, том. ФГ01 . ШПИОН. ISBN 0-8194-5294-7., п. 25 [1].
  6. ^ аб Ридл, Макс Дж. (2001). Основы оптического проектирования инфракрасных систем . Учебные тексты по оптической технике. Том. 48. ШПИОН. п. 1. ISBN 978-0-8194-4051-8.
  7. ^ аб Хехт, Юджин (2017). «5.3.2 Входные и выходные ученики». Оптика (5-е изд.). Пирсон. п. 184. ИСБН 978-1-292-09693-3.
  8. ^ Малакара, Дэниел и Закариас (2003). Справочник по оптическому проектированию (2-е изд.). КПР. п. 25. ISBN 978-0-8247-4613-1.
  9. ^ Грейвенкамп (2004), с. 28 [2].
  10. ^ Грейвенкамп (2004), стр. 19–20 [3].
  11. Николсон, Марк (21 июля 2005 г.). «Понимание параксиальной трассировки лучей». База знаний пользователей ZEMAX . Проверено 17 августа 2009 г.
  12. ^ аб Атчисон, Дэвид А.; Смит, Джордж (2000). «А1: Параксиальная оптика». Оптика человеческого глаза . Elsevier Науки о здоровье. п. 237. ИСБН 978-0-7506-3775-6.
  13. ^ Велфорд, WT (1986). «4: Конечная трассировка лучей». Аберрации оптических систем . Серия Адама Хильгера по оптике и оптоэлектронике. ЦРК Пресс. п. 50. ISBN 978-0-85274-564-9.
  14. ^ Бухдал, HA (1993). Введение в гамильтонову оптику . Дувр. п. 26. ISBN 978-0-486-67597-8.
  15. Николсон, Марк (21 июля 2005 г.). «Понимание параксиальной трассировки лучей». База знаний пользователей ZEMAX . п. 2 . Проверено 17 августа 2009 г.