stringtranslate.com

Нефтяной резервуар

Карта структуры, если смотреть вниз, созданная с помощью программного обеспечения для контурных карт газового и нефтяного резервуара глубиной 8500 футов на месторождении Эрат, Эрат, Луизиана . Разрыв слева направо вверху указывает на линию разлома между синей и зеленой контурными линиями и фиолетовой, красной и желтой линиями. Тонкая красная круговая линия посередине указывает на верхнюю часть масляного резервуара. Поскольку газ поднимается над нефтью, эта последняя линия отмечает зону контакта газа и нефти.

Нефтяной резервуар или резервуар нефти и газа представляет собой подземное скопление углеводородов , содержащихся в пористых или трещиноватых горных породах. Такие резервуары образуются, когда кероген (древнее растительное вещество) создается в окружающей породе из-за присутствия высокой температуры и давления в земной коре .

Резервуары в целом подразделяются на традиционные и нетрадиционные . В традиционных коллекторах природные углеводороды, такие как сырая нефть ( нефть ) или природный газ , улавливаются вышележащими горными породами с более низкой проницаемостью , тогда как в нетрадиционных коллекторах породы имеют высокую пористость и низкую проницаемость, что удерживает углеводороды в ловушке на месте. , поэтому не требует заглушки . Резервуары обнаруживаются методами разведки углеводородов .

Нефтяное месторождение

Нефтяное месторождение с десятками скважин. Это нефтяное месторождение Саммерленд недалеко от Санта-Барбары, Калифорния , до 1906 года.
Сланцевые вспышки Eagle Ford , видимые из космоса (зеленые и инфракрасные длины волн), в дуге между «1» и «2» среди городов на юго-востоке Техаса в 2012 году.

Нефтяное месторождение — это область скопления жидкой нефти под землей в нескольких (потенциально связанных) резервуарах, захваченных по мере подъема в непроницаемые скальные формации. С промышленной точки зрения нефтяное месторождение подразумевает наличие экономической выгоды, заслуживающей коммерческого внимания. [1] [2] Нефтяные месторождения могут простираться на несколько сотен километров по поверхности, а это означает, что усилия по добыче могут быть большими и рассредоточенными по всей территории. Помимо добывающего оборудования, могут быть разведочные скважины, исследующие края с целью обнаружения большей площади резервуара, трубопроводы для транспортировки нефти в другое место и вспомогательные сооружения.

Нефтяные месторождения могут располагаться везде, где позволяет геология подстилающей породы, а это означает, что некоторые месторождения могут находиться вдали от цивилизации, в том числе на море. Создание предприятия на нефтяном месторождении может быть логистически сложной задачей, поскольку оно включает в себя оборудование, связанное с добычей и транспортировкой, а также инфраструктуру, такую ​​как дороги и жилье для рабочих. Эту инфраструктуру необходимо проектировать с учетом срока службы нефтяного месторождения, поскольку добыча может продолжаться многие годы. Несколько компаний, таких как Hill International , Bechtel , Esso , Weatherford International , Schlumberger Limited , Baker Hughes и Halliburton , имеют организации, специализирующиеся на крупномасштабном строительстве инфраструктуры для поддержки эксплуатации нефтяных месторождений.

Термин «нефтяное месторождение» можно использовать как сокращение для обозначения всей нефтяной промышленности . Однако точнее разделить нефтяную отрасль на три сектора: upstream ( добыча сырой нефти из скважин и отделение воды от нефти ), middlestream (трубопроводный и танкерный транспорт сырой нефти) и downstream ( переработка сырой нефти в продукты, сбыт продуктов нефтепереработки и транспортировка на нефтезаправочные станции).

Более 65 000 нефтяных месторождений разбросаны по всему миру, на суше и на море. [3] Крупнейшими из них являются месторождение Гавар в Саудовской Аравии и месторождение Бурган в Кувейте , запасы каждого из которых оцениваются от 66 до 104 миллиардов баррелей (9,5×10 9 м 3 ) . [4] [5] В современную эпоху расположение нефтяных месторождений с доказанными запасами нефти является ключевым фактором во многих геополитических конфликтах. [6]

Газовое месторождение

Расположение газовых месторождений Ирана
Объект газового месторождения Вучковец , Хорватия
На заднем плане показано буровое судно Discoverer Enterprise , работающее на этапе разведки нового морского месторождения. Морское судно поддержки Toisa Perseus показано на переднем плане, иллюстрируя часть сложной логистики морской разведки и добычи нефти и газа.

Природный газ образуется в результате того же геологического процесса термического крекинга , который превращает кероген в нефть. Как следствие, нефть и природный газ часто встречаются вместе. В обиходе месторождения, богатые нефтью, называются нефтяными месторождениями, а месторождения, богатые природным газом, называются месторождениями природного газа.

Как правило, органические отложения, захороненные на глубине от 1000 до 6000 м (при температуре от 60 до 150 ° C ), образуют нефть, а отложения, захороненные глубже и при более высоких температурах, выделяют природный газ. Чем глубже источник, тем «суше» газ (т. е. тем меньше доля конденсатов в газе). Поскольку и нефть, и природный газ легче воды, они имеют тенденцию подниматься из своих источников до тех пор, пока либо не просочятся на поверхность, либо не будут пойманы непроницаемой стратиграфической ловушкой. Их можно извлечь из ловушки путем бурения.

Крупнейшим месторождением природного газа является газовое месторождение Южный Парс/Асалуйе , которое находится между Ираном и Катаром . Вторым по величине месторождением природного газа является Уренгойское газовое месторождение , а третьим по величине является Ямбургское газовое месторождение , оба в России .

Как и нефть, природный газ часто встречается под водой на морских газовых месторождениях, таких как Северное море , газовое месторождение Корриб у Ирландии и недалеко от острова Сейбл . Технология добычи и транспортировки природного газа на море отличается от наземных месторождений. Он использует несколько очень крупных морских буровых установок из-за стоимости и логистических трудностей при работе над водой.

Рост цен на газ в начале 21 века побудил буровиков вновь заняться месторождениями, которые ранее не считались экономически жизнеспособными. Например, в 2008 году McMoran Exploration прошла бурение на глубине более 32 000 футов (9754 м) (самая глубокая испытательная скважина в истории добычи газа) на участке Blackbeard в Мексиканском заливе. [7] Буровая установка Exxon Mobil к 2006 году достигла глубины 30 000 футов, не обнаружив газа, прежде чем покинула площадку.

Формирование

Сырая нефть встречается во всех нефтяных резервуарах, образовавшихся в земной коре из останков некогда живого существа. Имеющиеся данные указывают на то, что миллионы лет тепла и давления превратили остатки микроскопических растений и животных в нефть и природный газ.

Рой Нурми, консультант по интерпретации нефтесервисной компании Schlumberger , описал этот процесс следующим образом:

Планктон и водоросли, белки и жизнь, которая плавает в море, умирая, падает на дно, и эти организмы будут источником нашей нефти и газа. Когда они погребены под накопившимся осадком и достигают достаточной температуры, выше 50–70 °C, они начинают готовиться. Эта трансформация, это изменение превращает их в жидкие углеводороды, которые движутся и мигрируют, и станут нашими резервуарами нефти и газа. [8]

В дополнение к водной экосистеме , которая обычно представляет собой море, но также может быть рекой, озером, коралловым рифом или водорослевым матом , для формирования резервуара нефти или газа также требуется осадочный бассейн , который проходит четыре этапа: [9]

Время также является важным фактором; Предполагается, что в долине реки Огайо когда-то могло быть столько же нефти, сколько на Ближнем Востоке , но она ускользнула из-за отсутствия ловушек. [9] Северное море , с другой стороны, пережило миллионы лет изменений уровня моря, которые успешно привели к образованию более 150 нефтяных месторождений. [10]

Хотя процесс в целом один и тот же, различные факторы окружающей среды приводят к созданию самых разнообразных водоемов. Водоемы существуют где угодно, от поверхности земли до 30 000 футов (9 000 м) под поверхностью, и имеют самые разные формы, размеры и возраст. [11] В последние годы магматические резервуары стали важной новой областью разведки нефти, особенно в трахитовых и базальтовых формациях. Эти два типа коллекторов различаются содержанием нефти и физическими свойствами, такими как связь трещин , связь пор и пористость породы . [12]

Геология

Ловушки

Ловушка образуется, когда силы плавучести , вызывающие миграцию углеводородов вверх через проницаемую породу , не могут преодолеть капиллярные силы уплотняющей среды. Время образования ловушек относительно времени образования и миграции нефти имеет решающее значение для обеспечения возможности формирования резервуара. [13]

Геологи-нефтяники разделяют ловушки на три категории в зависимости от их геологических характеристик: структурные ловушки, стратиграфические ловушки и гораздо менее распространенные гидродинамические ловушки . [14] Механизмы ловушек для многих нефтяных резервуаров имеют характеристики нескольких категорий и могут быть известны как комбинированные ловушки. Ловушки описываются как структурные ловушки (в деформированных пластах, таких как складки и разломы) или стратиграфические ловушки (в областях, где изменяются типы горных пород, такие как несогласия, выклинивания и рифы).

Структурные ловушки

Структурные ловушки образуются в результате изменений в строении недр в результате таких процессов, как складчатость и разломы , приводящих к образованию куполов , антиклиналей и складок. [15] Примерами ловушек такого типа являются антиклинальная ловушка, [16] ловушка разлома и ловушка соляного купола . Они легче очерчены и более перспективны, чем их стратиграфические аналоги, при этом большая часть мировых запасов нефти находится в структурных ловушках.

Стратиграфические ловушки

Стратиграфические ловушки образуются в результате латеральных и вертикальных изменений мощности, текстуры, пористости или литологии пород-коллекторов. Примерами ловушек этого типа являются ловушка несогласия, линзовая ловушка и рифовая ловушка. [17]

Гидродинамические ловушки

Гидродинамические ловушки — гораздо менее распространенный тип ловушек. [18] Они вызваны перепадами давления воды, которые связаны с потоком воды, создающим наклон контакта углеводород-вода.

Уплотнение/покрывающая порода

Покрышка (также называемая покрывающей породой) является основной частью ловушки, которая предотвращает дальнейшую миграцию углеводородов вверх. Капиллярное уплотнение образуется, когда капиллярное давление в устьях пор превышает или равно плавучему давлению мигрирующих углеводородов. Они не позволяют жидкостям мигрировать через них до тех пор, пока их целостность не будет нарушена, что приведет к утечке. Существует два типа капиллярных уплотнений [19] , классификация которых основана на преимущественном механизме утечки: гидравлическое уплотнение и мембранное уплотнение.

Мембранное уплотнение будет протекать всякий раз, когда перепад давления на уплотнении превышает пороговое давление смещения, позволяя жидкостям мигрировать через поровые пространства уплотнения. Он будет течь ровно настолько, чтобы перепад давления стал ниже давления смещения, и снова уплотнится. [20]

Гидравлическое уплотнение возникает в породах, которые имеют значительно более высокое давление вытеснения, так что давление, необходимое для разрушения при растяжении, на самом деле ниже, чем давление, необходимое для вытеснения жидкости, - например, в эвапоритах или очень плотных сланцах. Порода разрушается, когда поровое давление превышает как ее минимальное напряжение, так и ее предел прочности на растяжение, а затем снова смыкается, когда давление снижается и трещины закрываются.

Нетрадиционные водоемы

Схематическая классификация нетрадиционных пластов, выраженная как энергия флюида в зависимости от потенциала потока, на основе инициалов без стимуляции.

Нетрадиционные (нефтяные и газовые) коллекторы представляют собой скопления, в которых фазы нефти и газа прочно связаны с тканью породы сильными капиллярными силами, что требует специальных мер для оценки и добычи. [21] Нетрадиционные резервуары формируются совершенно иначе, чем традиционные резервуары, главное отличие состоит в том, что в них нет «ловушек». Этот тип резервуара также может эксплуатироваться уникальным способом, поскольку плавучесть может не быть движущей силой накопления нефти и газа в таких резервуарах. Это аналогично утверждению, что нефть, которую можно добыть, образуется внутри самой нефтематеринской породы, а не накапливается под покрывной породой. Нефтеносные пески являются примером нетрадиционного нефтяного резервуара. [22]

Нетрадиционные коллекторы и связанная с ними нетрадиционная нефть охватывают широкий спектр методов добычи и переработки нефти, а также множество различных источников. [23] Поскольку нефть содержится в нефтематеринской породе, нетрадиционные коллекторы требуют, чтобы добывающее предприятие функционировало как горнодобывающее предприятие , а не бурило и перекачивало, как в обычном коллекторе. Это имеет свои компромиссы: более высокие затраты после добычи, связанные с полной и чистой добычей нефти, являются фактором, который следует учитывать компании, заинтересованной в разработке месторождения. Хвосты также остаются, что увеличивает затраты на очистку. Несмотря на эти компромиссы, добыча нетрадиционной нефти ведется более быстрыми темпами из-за нехватки традиционных месторождений во всем мире.

Оценка запасов

После открытия резервуара инженер-нефтяник попытается составить более полную картину накопления. В простом хрестоматийном примере однородного резервуара первым этапом является проведение сейсморазведки для определения возможного размера ловушки. Оценочные скважины могут быть использованы для определения места водонефтяного контакта и вместе с ним высоты залегания нефтеносных песков. Часто в сочетании с сейсмическими данными можно оценить объем нефтеносного резервуара.

Следующим шагом является использование информации из оценочных скважин для оценки пористости породы. Пористость нефтяного месторождения, или процент от общего объема, который содержит жидкости, а не твердую породу, составляет 20–35% или меньше. Он может дать информацию о фактической емкости. Лабораторные испытания могут определить характеристики пластовых флюидов, в частности, коэффициент расширения нефти или то, насколько нефть расширяется при попадании из пласта под высоким давлением и высокой температурой в «резервуар для запасов» на поверхности.

Имея такую ​​информацию, можно оценить, сколько баррелей нефти находится в резервуаре. Такая нефть называется запасом нефти в резервуарах изначально . В результате изучения таких факторов, как проницаемость породы (насколько легко флюиды могут течь через породу) и возможных приводных механизмов, можно оценить коэффициент нефтеотдачи, или какую долю нефти в пласте можно разумно ожидать. произведено. Коэффициент восстановления обычно составляет 30–35%, что дает оценку извлекаемых ресурсов. [24]

Сложность в том, что водоемы неоднородны. Они имеют переменную пористость и проницаемость и могут быть разделены на отдельные части, трещины и разломы разрушают их и усложняют течение флюидов. По этой причине часто проводится компьютерное моделирование экономически выгодных резервуаров. Геологи, геофизики и инженеры-разработчики совместно работают над созданием модели, позволяющей моделировать поток флюидов в пласте-коллекторе, что приводит к более точной оценке извлекаемых ресурсов.

Запасы – это лишь часть тех извлекаемых ресурсов, которые будут разрабатываться посредством выявленных и утвержденных проектов разработки. Поскольку оценка запасов оказывает прямое влияние на компанию или стоимость активов, она обычно следует строгому набору правил или указаний.

Производство

Чтобы получить содержимое нефтяного резервуара, обычно необходимо бурить земную кору, хотя в некоторых частях мира существуют поверхностные выходы нефти, такие как смоляные ямы Ла Бреа в Калифорнии и многочисленные выходы в Тринидаде . Факторы, влияющие на количество извлекаемых углеводородов в пласте, включают распределение флюидов в пласте, начальные объемы пластовых флюидов, пластовое давление, свойства флюидов и пород, геометрию пласта, тип скважин, количество скважин, размещение скважин, концепцию разработки и философия эксплуатации. [24] [25]

Современное производство включает термические , газовые и химические методы добычи для повышения нефтеотдачи. [26]

Приводные механизмы

Нетронутый резервуар может находиться под давлением, достаточным для выталкивания углеводородов на поверхность. По мере добычи флюидов давление часто падает, и добыча прекращается. Резервуар может реагировать на отбор жидкости таким образом, чтобы поддерживать давление. Могут потребоваться методы искусственного привода.

Раствор-газовый привод

Этот механизм (также известный как привод истощения) зависит от попутного газа в нефти. Первичный резервуар может быть полностью полужидким, но из-за давления ожидается, что в растворе будут находиться газообразные углеводороды. По мере истощения резервуара давление падает ниже точки пузырька , и газ выходит из раствора, образуя наверху газовую шапку. Эта газовая шапка давит на жидкость, помогая поддерживать давление.

Это происходит, когда природный газ находится в шапке ниже нефти. Когда скважина пробурена, пониженное давление выше означает, что нефть расширяется. Когда давление снижается, оно достигает точки кипения, и впоследствии пузырьки газа вытесняют нефть на поверхность. Затем пузырьки достигают критического насыщения и стекают вместе как единая газовая фаза. За пределами этой точки и ниже этого давления газовая фаза вытекает быстрее, чем нефть, из-за ее более низкой вязкости. Производится больше свободного газа, и в конечном итоге источник энергии истощается. В некоторых случаях, в зависимости от геологии, газ может мигрировать в кровлю нефти и образовывать вторичную газовую шапку. Некоторая энергия может быть получена из воды, газа в воде или сжатой породы. Обычно это незначительный вклад по сравнению с расширением углеводородов.

При правильном управлении производительностью можно получить большую выгоду от приводов на растворенном газе. Вторичная добыча включает закачку газа или воды для поддержания пластового давления. Газонефтяной фактор и дебит нефти стабильны до тех пор, пока пластовое давление не упадет ниже точки насыщения газом, когда будет достигнута критическая газонасыщенность. Когда газ истощается, газовый фактор и дебит нефти падают, пластовое давление снижается, и энергия пласта исчерпывается.

Привод газовой шапки

В резервуарах, уже имеющих газовую шапку (первичное давление уже ниже точки насыщения), газовая шапка расширяется по мере истощения резервуара, давя на секции жидкости, создавая дополнительное давление. Он присутствует в резервуаре, если газа больше, чем можно растворить в резервуаре. Газ часто мигрирует к гребню структуры. Он сжимается поверх резерва масла, поскольку по мере выработки масла крышка помогает выталкивать масло. Со временем газовая шапка опустится и пропитает нефть, а скважина будет добывать все больше и больше газа, пока не начнет производить только газ.

Лучше всего эффективно управлять газовой шапкой, то есть размещать нефтяные скважины так, чтобы газовая шапка не доходила до них до тех пор, пока не будет добыто максимальное количество нефти. Также высокий дебит может привести к миграции газа вниз в продуктивный интервал. В этом случае с течением времени истощение пластового давления происходит не так резко, как при закачке газа на раствор. В этом случае дебит нефти не будет снижаться столь резко, но будет зависеть также от расположения скважины относительно газовой шапки. Как и в случае с другими приводными механизмами, для поддержания пластового давления можно использовать закачку воды или газа. Когда газовая шапка сочетается с притоком воды, механизм восстановления может быть очень эффективным.

Водоносный (водный) привод

Ниже углеводородов может присутствовать вода (обычно соленая). Вода, как и все жидкости, в некоторой степени сжимаема. По мере истощения запасов углеводородов снижение давления в пласте позволяет воде слегка расширяться. Хотя это расширение единицы незначительно, если водоносный горизонт достаточно велик, это приведет к значительному увеличению объема, что подтолкнет углеводороды вверх, поддерживая давление.

В водонапорном коллекторе снижение пластового давления очень незначительное; в некоторых случаях пластовое давление может оставаться неизменным. Коэффициент газ/нефть также остается стабильным. Дебит нефти будет оставаться достаточно стабильным до тех пор, пока вода не достигнет скважины. Со временем обводненность увеличится, и скважина будет обводнена. [27]

Вода может присутствовать в водоносном горизонте (но редко пополняемом поверхностными водами ). Эта вода постепенно заменяет объем нефти и газа, добываемый из скважины, при условии, что дебит добычи эквивалентен активности водоносного горизонта. То есть водоносный горизонт пополняется за счет некоторого притока природной воды. Если вместе с нефтью начнет добываться вода, скорость добычи может стать неэкономичной из-за более высоких затрат на подъем и водоотведение.

Закачка воды и газа

Если естественных притоков недостаточно, как это часто бывает, то давление можно поддерживать искусственно, закачивая воду в водоносный горизонт или газ в газовую шапку.

Гравитационный дренаж

Сила гравитации заставит нефть двигаться вниз от газа и вверх от воды. Если существует вертикальная проницаемость, то темпы нефтеотдачи могут быть еще выше.

Газовые и газоконденсатные залежи

Это происходит, если пластовые условия позволяют углеводородам существовать в виде газа. Извлечение — это вопрос расширения газа. Добыча из закрытого пласта (т.е. без гидронагнетания) очень хороша, особенно если забойное давление снижено до минимума (обычно это делается с помощью компрессоров на устье скважины). Любые добываемые жидкости имеют цвет от светлого до бесцветного, с плотностью выше 45 API. Циклирование газа — это процесс, при котором сухой газ закачивается и добывается вместе с конденсированной жидкостью.

Смотрите также

Рекомендации

  1. ^ Исполнительный комитет API по стандартизации нефтепромыслового оборудования и материалов (1 января 1988 г.). «Словарь терминологии нефтедобывающей промышленности» (PDF) . Даллас: Американский институт нефти . Проверено 10 февраля 2020 г.
  2. ^ Гиллис, Гретхен. «Нефтяное месторождение - Глоссарий Schlumberger Oilfield». www.glossary.oilfield.slb.com . Проверено 11 февраля 2020 г.
  3. ^ Ли, Гоюй (2011). Мировой атлас нефтегазовых бассейнов. Уайли-Блэквелл. ISBN 978-1-4443-9005-6. ОСЛК  707075078.
  4. ^ Станифорд, Стюарт (май 2007 г.). «Уровни истощения в Гаваре». www.321energy.com . Архивировано из оригинала 29 мая 2016 г. Проверено 23 ноября 2021 г.
  5. ^ «Внешняя политика: Список: вывод нефтяных месторождений в автономный режим» . Август 2006 г. Архивировано из оригинала 20 августа 2006 г. Проверено 23 ноября 2021 г.
  6. ^ Ергин, Дэниел (1991). Приз: Эпические поиски нефти, денег и власти . Нью-Йорк: Саймон и Шустер. ISBN 0-671-50248-4.
  7. Знаменитая сухая дыра получает второй шанс, Wall Street Journal, 21 июля 2008 г., стр.B1.
  8. ^ «Производство нефти: рождение резервуара». Превосходство Шлюмберже в области развития образования . Архивировано из оригинала 20 ноября 2005 года . Проверено 30 января 2006 г.
  9. ^ ab «Что такое резервуар?». Превосходство Шлюмберже в области развития образования . Архивировано из оригинала 27 апреля 2006 года . Проверено 30 января 2006 г.
  10. ^ «Взлет и падение Северного моря». Превосходство Шлюмберже в области развития образования . Архивировано из оригинала 22 ноября 2005 года . Проверено 30 января 2006 г.
  11. ^ «Что такое резервуар? - Каковы некоторые характеристики?». Превосходство Шлюмберже в области развития образования . Архивировано из оригинала 16 августа 2011 года . Проверено 30 января 2006 г.
  12. ^ Цзунли, Лю; Чжувэнь, Ван; Дапэн, Чжоу; Шуцинь, Чжао; Мин, Сян (31 мая 2017 г.). «Характеристики порового распределения магматических резервуаров восточного прогиба впадины Ляохэ». Открытые геологические науки . 9 (1): 161–173. Бибкод : 2017OGeo....9...14Z. дои : 10.1515/geo-2017-0014 . ISSN  2391-5447.
  13. ^ Глуяс, Дж; Сворбрик, Р. (2004). Нефтяная геология . Издательство Блэквелл. ISBN 978-0-632-03767-4.
  14. ^ Бассейновый анализ: принципы и приложения. Аллен, Пенсильвания, и Аллен-младший (2005). Второе издание. Опубл. Блэквелл Паблишинг
  15. ^ «Структурные ловушки». Архивировано из оригинала 14 февраля 2015 г. Проверено 2 февраля 2012 г.
  16. ^ Шлюмберже - Результаты поиска
  17. ^ "Нефтяная ловушка". Архивировано из оригинала 23 января 2013 г. Проверено 2 февраля 2012 г.
  18. ^ Глуяс, Дж; Сворбрик, Р. (2004). Нефтяная геология . Издательство Блэквелл. п. 148. ИСБН 978-0-632-03767-4.
  19. ^ Уоттс, Нью-Йорк, 1987, Теоретические аспекты покрывающих пород и покрышек разломов для одно- и двухфазных углеводородных колонок, Морская и нефтяная геология , 4, 274-307.
  20. ^ Питер Дж. Ортолева (1994). «Отделения под раковину и уплотнители». Мемуары AAPG . ААПГ. 61 : 34. ISBN 9780891813408. Проверено 15 марта 2012 г.
  21. ^ SPE (2018). Система управления нефтяными ресурсами (пересмотрено в июне 2018 г.) (изд. 1.01). Общество инженеров-нефтяников. п. 52. ИСБН 978-1-61399-660-7.
  22. ^ ЦзИА, Ченгзао (2017). «Прорыв и значение нетрадиционной нефти и газа для классической теории геологии нефти». Разведка и разработка нефти . 44 (1): 1–10. дои : 10.1016/s1876-3804(17)30002-2 . ISSN  1876-3804.
  23. ^ «Нефть». 05.04.2016. Архивировано из оригинала 5 апреля 2016 г. Проверено 2 ноября 2021 г.
  24. ^ аб Бабадагли, Тайфун (2007). «Освоение зрелых нефтяных месторождений — Обзор». Журнал нефтяной науки и техники . 57 (3–4): 221–246. doi :10.1016/j.petrol.2006.10.006.
  25. ^ Лаваль, Казим А.; Ядуа, Асекхаме У.; Овуру, Матильда И.; Око, Олучукву М.; Эйтайо, Стелла И.; Матемилола, Сака; Оламигоке, Олугбенга (01 марта 2020 г.). «Быстрая проверка нефтяных оторочек на предмет разработки и управления». Журнал разведки и технологии добычи нефти . 10 (3): 1155–1168. дои : 10.1007/s13202-019-00810-6 . ISSN  2190-0566.
  26. ^ Альварадо, Владимир; Манрике, Эдуардо (27 августа 2010 г.). «Увеличение нефтеотдачи: обновленный обзор». Энергии . 3 (9): 1529–1575. дои : 10.3390/en3091529 . ISSN  1996-1073.
  27. ^ Энергетический словарь Schlumberger. «водный привод». глоссарий.slb.com . Проверено 12 февраля 2023 г.