stringtranslate.com

Геологическая шкала времени

Геологическая шкала времени пропорционально представлена ​​в виде логарифмической спирали. На изображении также показаны некоторые примечательные события в истории Земли и общая эволюция жизни.
Геологическая шкала времени, пропорционально представленная в виде логарифмической спирали с некоторыми крупными событиями в истории Земли. Мегааннус (Ma) представляет один миллион (10 6 ) лет.

Геологическая шкала времени или геологическая шкала времени ( GTS ) — это представление времени , основанное на летописи горных пород Земли . Это система хронологического датирования , которая использует хроностратиграфию (процесс соотнесения слоев со временем) и геохронологию (научный раздел геологии , целью которого является определение возраста горных пород). Она используется в основном учеными, изучающими Землю (включая геологов , палеонтологов , геофизиков , геохимиков и палеоклиматологов ) для описания сроков и взаимосвязей событий в геологической истории. Шкала времени была разработана путем изучения слоев горных пород и наблюдения за их взаимосвязями, а также выявления таких особенностей, как литология , палеомагнитные свойства и ископаемые остатки . Определение стандартизированных международных единиц геологического времени является обязанностью Международной комиссии по стратиграфии (ICS), составного органа Международного союза геологических наук (IUGS), чьей основной целью [1] является точное определение глобальных хроностратиграфических единиц Международной хроностратиграфической карты (ICC) [2] , которые используются для определения подразделений геологического времени. Хроностратиграфические подразделения, в свою очередь, используются для определения геохронологических единиц. [2]

Хотя некоторые региональные термины все еще используются, [3] таблица геологического времени соответствует номенклатуре , возрастам и цветовым кодам, установленным МКП. [1] [4]

Принципы

Геологическая шкала времени — это способ представления глубокого времени , основанный на событиях, которые произошли на протяжении всей истории Земли , временной промежуток около 4,54 ± 0,05 млрд лет (4,54 млрд лет). [5] Она хронологически организует слои, а затем и время, наблюдая фундаментальные изменения в стратиграфии, которые соответствуют крупным геологическим или палеонтологическим событиям. Например, событие вымирания мел-палеоген отмечает нижнюю границу палеогеновой системы/периода и, таким образом, границу между меловой и палеогеновой системами/периодами. Для подразделений до криогена используются произвольные числовые определения границ ( глобальные стандартные стратиграфические возрасты , GSSAs) для разделения геологического времени. Были сделаны предложения по лучшему согласованию этих подразделений с летописью горных пород. [6] [3]

Исторически региональные геологические шкалы времени использовались [3] из-за лито- и биостратиграфических различий по всему миру в эквивалентных по времени породах. ICS долгое время работал над согласованием противоречивой терминологии путем стандартизации глобально значимых и идентифицируемых стратиграфических горизонтов , которые могут быть использованы для определения нижних границ хроностратиграфических единиц. Определение хроностратиграфических единиц таким образом позволяет использовать глобальную стандартизированную номенклатуру. ICC представляет эти продолжающиеся усилия.

Относительные взаимоотношения горных пород для определения их хроностратиграфических положений используют следующие основные принципы: [7] [8] [9] [10]

Терминология

GTS делится на хроностратиграфические единицы и соответствующие им геохронологические единицы. Они представлены в ICC, опубликованном ICS; однако региональные термины все еще используются в некоторых областях.

Хроностратиграфия — это элемент стратиграфии , который занимается связью между горными породами и относительным измерением геологического времени. [11] Это процесс, в котором отдельные слои между определенными стратиграфическими горизонтами назначаются для представления относительного интервала геологического времени.

Хроностратиграфическая единицаэто тело горной породы, слоистое или неслоистое, которое определяется между указанными стратиграфическими горизонтами, которые представляют указанные интервалы геологического времени. Они включают все горные породы, представляющие определенный интервал геологического времени, и только этот временной промежуток. [11] Эонотема, эратема, система, серия, подсерия, ярус и подъярус являются иерархическими хроностратиграфическими единицами. [11] Геохронология является научным разделом геологии, целью которого является определение возраста горных пород, ископаемых и осадков либо с помощью абсолютных (например, радиометрическое датирование ), либо относительных средств (например, стратиграфическое положение , палеомагнетизм , стабильные изотопные отношения ). [12]

Геохронологическая единицаявляется подразделением геологического времени. Это числовое представление нематериального свойства (времени). [12] Эон, эра, период, эпоха, субэпоха, возраст и субвозраст являются иерархическими геохронологическими единицами. [11] Геохронометрия является областью геохронологии, которая количественно определяет геологическое время. [12]

Стратотипический разрез и точка глобальной границы (GSSP) — это согласованная на международном уровне опорная точка на стратиграфическом разрезе , которая определяет нижние границы стадий на шкале геологического времени. [13] (В последнее время это используется для определения основания системы) [14]

Глобальный стандартный стратиграфический возраст (GSSA) [15] — это только числовая хронологическая точка отсчета, используемая для определения базы геохронологических единиц до криогения. Эти точки определяются произвольно. [11] Они используются там, где GSSP еще не установлены. Продолжаются исследования по определению GSSP для базы всех единиц, которые в настоящее время определяются GSSA.

Числовое (геохронометрическое) представление геохронологической единицы может и чаще всего подвергается изменениям, когда геохронология уточняет геохронометрию, в то время как эквивалентная хроностратиграфическая единица остается прежней, и их пересмотр встречается реже. Например, в начале 2022 года граница между эдиакарским и кембрийским периодами ( геохронологические единицы) была пересмотрена с 541 млн лет до 538,8 млн лет, но определение породы границы (GSSP) в основании кембрия и, таким образом, граница между эдиакарской и кембрийской системами (хроностратиграфические единицы) не изменились, была уточнена лишь геохронометрия.

Числовые значения в ICC представлены единицей Ma (мегааннум, для «миллион лет »). Например, 201,4 ± 0,2 млн лет, нижняя граница юрского периода , определяется как 201 400 000 лет с неопределенностью 200 000 лет. Другие префиксные единицы СИ, обычно используемые геологами, — это Ga (гиганнум, миллиард лет) и ka (килоаннум, тысяча лет), причем последняя часто представлена ​​в калиброванных единицах ( до настоящего времени ).

Подразделения геологического времени

Подразделения «ранний» и «поздний» используются как геохронологические эквиваленты нижнего и верхнего хроностратиграфических подразделений , например, ранний триасовый период (геохронологическая единица) используется вместо нижнего триасового ряда (хроностратиграфическая единица).

Породы, представляющие данную хроностратиграфическую единицу, являются этой хроностратиграфической единицей, а время, в которое они были отложены, является геохронологической единицей, т. е. породы, представляющие силурийский ряд, являются силурийским рядом, и они отложились в течение силурийского периода.

Наименование геологического времени

Названия геологических единиц времени определяются для хроностратиграфических единиц с соответствующей геохронологической единицей, имеющей то же название с изменением последнего (например, эонотема фанерозоя становится эоном фанерозоя). Названия эратем в фанерозое были выбраны для отражения основных изменений в истории жизни на Земле: палеозой (старая жизнь), мезозой (средняя жизнь) и кайнозой (новая жизнь). Названия систем различаются по происхождению, некоторые указывают на хронологическое положение (например, палеоген), в то время как другие названы по литологии (например, мел), географии (например, пермский ) или являются племенными (например, ордовикский ) по происхождению. Большинство в настоящее время признанных серий и подсерий названы по их положению внутри системы/серии (ранняя/средняя/поздняя); однако ICS выступает за то, чтобы все новые серии и подсерии были названы по географическому объекту в непосредственной близости от его стратотипа или типовой местности . Название стадий также должно быть образовано от географического объекта в местности, где они расположены в стратотипе или типовой местности. [11]

Неофициально время до кембрия часто называют докембрием или докембрием (суперэоном). [6] [примечание 3]

История геологической шкалы времени

Ранняя история

Хотя современная геологическая шкала времени была сформулирована только в 1911 году [34] Артуром Холмсом , более широкая концепция того, что горные породы и время связаны, может быть прослежена до (по крайней мере) философов Древней Греции . Ксенофан из Колофона (ок. 570–487  гг. до н. э. ) наблюдал за пластами горных пород с окаменелостями ракушек, расположенными выше уровня моря, рассматривал их как некогда живые организмы и использовал это, чтобы указать на нестабильные отношения, в которых море временами наступало на сушу, а в другие времена регрессировало . [ 35] Эту точку зрения разделяли несколько современников Ксенофана и те, кто следовал за ним, включая Аристотеля (384–322 гг. до н. э.), который (с дополнительными наблюдениями) рассуждал, что положение суши и моря менялось в течение длительных периодов времени. Концепция глубокого времени была также признана китайским натуралистом Шэнь Ко [36] (1031–1095) и исламскими учеными -философами, в частности, Братьями Чистоты , которые писали о процессах стратификации с течением времени в своих трактатах . [35] Их работа, вероятно, вдохновила персидского полимата XI века Авиценну (Ибн Сина, 980–1037), который написал в «Книге исцеления» (1027) о концепции стратификации и суперпозиции, опередив Николаса Стено более чем на шесть столетий. [35] Авиценна также признал ископаемые как «окаменения тел растений и животных», [37] а доминиканский епископ XIII века Альберт Великий (ок. 1200–1280) расширил это до теории окаменевшей жидкости. [38] [ требуется проверка ] Эти работы, по-видимому, не оказали большого влияния на учёных средневековой Европы , которые обращались к Библии, чтобы объяснить происхождение окаменелостей и изменений уровня моря, часто приписывая их «Потопу » , включая Ристоро д'Ареццо в 1282 году. [35] Только в эпоху итальянского Возрождения Леонардо да Винчи (1452–1519) возродил связь между стратификацией, относительным изменением уровня моря и временем, осудив приписывание окаменелостей «Потопу»: [39] [35]

О глупости и невежестве тех, кто воображает, что эти существа были перенесены в столь отдаленные от моря места Потопом... Почему мы находим так много фрагментов и целых ракушек между различными слоями камня, если они не были на берегу и не были покрыты землей, недавно выброшенной морем, которая затем окаменела? И если вышеупомянутый Потоп перенес их в эти места из моря, вы нашли бы ракушки на краю только одного слоя скалы, а не на краю многих, где можно сосчитать зимы лет, в течение которых море умножало слои песка и ила, принесенные соседними реками, и распространяло их по своим берегам. И если вы хотите сказать, что должно было быть много потопов, чтобы произвести эти слои и ракушки среди них, тогда вам стало бы необходимо подтвердить, что такой потоп происходил каждый год.

Эти взгляды да Винчи остались неопубликованными и, таким образом, не имели влияния в то время; однако, вопросы ископаемых и их значения обсуждались, и, хотя взгляды против Книги Бытия не были легко приняты, а несогласие с религиозной доктриной в некоторых местах было неразумным, такие ученые, как Джироламо Фракасторо, разделяли взгляды да Винчи и считали приписывание ископаемых «Потопу» абсурдным. [35]

Установление основных принципов

Нильс Стенсен, более известный как Николас Стено (1638–1686), считается создателем четырех руководящих принципов стратиграфии. [35] В своей работе De solido intra solidum naturaliter contento dissertationis prodromus Стено утверждает: [7] [40]

Соответственно, это принципы суперпозиции, изначальной горизонтальности, боковой непрерывности и сквозных связей. Из этого Стено сделал вывод, что слои залегают последовательно, и вывел относительное время (по мнению Стено, время от Сотворения мира ). Хотя принципы Стено были просты и привлекали много внимания, их применение оказалось сложным. [35] Эти основные принципы, хотя и с улучшенными и более тонкими интерпретациями, по-прежнему формируют основополагающие принципы определения корреляции слоев относительно геологического времени.

В течение XVIII века геологи поняли, что:

Формулировка современной геологической шкалы времени

Очевидное, самое раннее формальное разделение геологической летописи по времени было введено Томасом Бернетом , который применил двойную терминологию к горам, определив « montes primarii » для горных пород, образовавшихся во время «Потопа», и более молодые « monticulos secundarios», образовавшиеся позже из обломков « primarii» . [41] [35] Эта приписка «Потопу», хотя и подвергалась сомнению ранее такими людьми, как да Винчи, была основой теории нептунизма Абрахама Готтлоба Вернера (1749–1817) , в которой все горные породы выпали в результате одного потопа. [42] Конкурирующая теория, плутонизм , была разработана Антоном Моро (1687–1784) и также использовала первичное и вторичное деление для горных пород. [43] [35] В этой ранней версии теории плутонизма внутренняя часть Земли рассматривалась как горячая, и это привело к созданию первичных магматических и метаморфических пород, а вторичные породы образовали искаженные и ископаемые отложения. Эти первичные и вторичные подразделения были расширены Джованни Тарджони Тоццетти (1712–1783) и Джованни Ардуино (1713–1795), чтобы включить третичные и четвертичные подразделения. [35] Эти подразделения использовались для описания как времени, в течение которого породы были отложены, так и набора самих пород (т. е. было бы правильно говорить третичные породы и третичный период). Только четвертичное подразделение сохранилось в современной геологической шкале времени, в то время как третичное подразделение использовалось до начала 21-го века. Теории нептунизма и плутонизма конкурировали в начале 19 века , и ключевым фактором разрешения этого спора была работа Джеймса Хаттона (1726–1797), в частности его Теория Земли , впервые представленная Королевскому обществу Эдинбурга в 1785 году. [44] [8] [45] Теория Хаттона позже стала известна как униформизм , популяризированная Джоном Плейфэром [46] (1748–1819) и позже Чарльзом Лайеллем (1797–1875) в его Принципах геологии . [9] [47] [48] Их теории решительно оспаривали 6000-летний возраст Земли, как предполагал Джеймс Ашер , определенный с помощью библейской хронологии, которая была принята в то время западной религией. Вместо этого, используя геологические доказательства, они оспаривали, что Земля намного старше, закрепляя концепцию глубокого времени.

В начале 19 века Уильям Смит , Жорж Кювье , Жан д'Омалиус д'Аллуа и Александр Броньяр стали пионерами систематического разделения горных пород по стратиграфии и ископаемым комплексам. Эти геологи начали использовать местные названия, данные горным породам в более широком смысле, соотнося слои через национальные и континентальные границы на основе их сходства друг с другом. Многие из названий ниже ранга эратемы/эры, используемых в современной ICC/GTS, были определены в период с начала до середины 19 века.

Появление геохронометрии

В 19 веке возобновились дебаты относительно возраста Земли, когда геологи оценивали возраст на основе скорости денудации и толщины осадочных пород или химии океана, а физики определяли возраст охлаждения Земли или Солнца, используя базовую термодинамику или орбитальную физику. [5] Эти оценки варьировались от 15 000 миллионов лет до 0,075 миллиона лет в зависимости от метода и автора, но оценки лорда Кельвина и Кларенса Кинга пользовались в то время большим уважением из-за их выдающихся достижений в физике и геологии. Все эти ранние геохронометрические определения впоследствии оказались неверными.

Открытие радиоактивного распада Анри Беккерелем , Марией Кюри и Пьером Кюри заложило основу радиометрического датирования, однако знания и инструменты, необходимые для точного определения радиометрического возраста, появились только в середине 1950-х годов. [5] Ранние попытки определения возраста урановых минералов и пород Эрнестом Резерфордом , Бертрамом Болтвудом , Робертом Страттом и Артуром Холмсом достигли своей кульминации в том, что считается первой международной геологической шкалой времени Холмса в 1911 и 1913 годах. [34] [49] [50] Открытие изотопов в 1913 году [51] Фредериком Содди и разработки в области масс-спектрометрии , впервые разработанные Фрэнсисом Уильямом Астоном , Артуром Джеффри Демпстером и Альфредом О.К. Ниром в начале-середине 20-го века , наконец, позволили точно определить радиометрический возраст, и Холмс опубликовал несколько изменений в своей геологической шкале времени, а его окончательная версия вышла в 1960 году. [5] [50] [52] [53]

Современная международная геологическая шкала времени

Создание IUGS в 1961 году [54] и принятие Комиссии по стратиграфии (заявка подана в 1965 году) [55] в качестве членской комиссии IUGS привело к созданию ICS. Одной из основных целей ICS является «создание, публикация и пересмотр Международной хроностратиграфической карты ICS, которая является стандартной, справочной глобальной шкалой геологического времени, включающей ратифицированные решения Комиссии». [1]

Вслед за Холмсом было опубликовано несколько книг A Geological Time Scale в 1982, [56] 1989, [57] 2004, [58] 2008, [59] 2012, [60] 2016, [61] и 2020 годах. [62] Однако с 2013 года ICS взяла на себя ответственность за создание и распространение ICC, ссылаясь на коммерческий характер, независимое создание и отсутствие надзора со стороны ICS за ранее опубликованными версиями GTS (книгами GTS до 2013 года), хотя эти версии были опубликованы в тесном сотрудничестве с ICS. [2] Последующие книги Geologic Time Scale (2016 [61] и 2020 [62] ) являются коммерческими публикациями без надзора со стороны ICS и не полностью соответствуют диаграмме, созданной ICS. ICS, выпускающие GTS-карты, имеют версии (год/месяц), начиная с v2013/01. Каждый год публикуется как минимум одна новая версия, включающая любые изменения, одобренные ICS с момента предыдущей версии.

Следующие пять временных шкал показывают геологическую шкалу времени в масштабе. Первая показывает все время от образования Земли до настоящего времени, но это дает мало места для самого последнего эона. Вторая временная шкала показывает расширенный вид самого последнего эона. Аналогичным образом самая последняя эра расширена в третьей временной шкале, самый последний период расширен в четвертой временной шкале, а самая последняя эпоха расширена в пятой временной шкале.

SiderianRhyacianOrosirianStatherianCalymmianEctasianStenianTonianCryogenianEdiacaranCambrianOrdovicianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneEoarcheanPaleoarcheanMesoarcheanNeoarcheanPaleoproterozoicMesoproterozoicNeoproterozoicPaleozoicMesozoicCenozoicHadeanArcheanProterozoicPhanerozoicPrecambrian
CambrianOrdovicianSilurianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneNeogeneQuaternaryPaleozoicMesozoicCenozoicPhanerozoic
PaleoceneEoceneOligoceneMiocenePliocenePleistoceneHolocenePaleogeneNeogeneQuaternaryCenozoic
GelasianCalabrian (stage)ChibanianLate PleistocenePleistoceneHoloceneQuaternary

Горизонтальная шкала: миллионы лет (над шкалой времени) / тысячи лет (под шкалой времени)

GreenlandianNorthgrippianMeghalayanHolocene

Основные предлагаемые изменения в МУС

Предлагаемая серия/эпоха антропоцена

Впервые предложенный в 2000 году, [63] антропоцен это предлагаемая эпоха/серия для самого последнего времени в истории Земли. Хотя это все еще неформальный термин, он широко используется для обозначения текущего геологического временного интервала, в котором многие условия и процессы на Земле глубоко изменены человеческим воздействием. [64] По состоянию на апрель 2022 года антропоцен не был ратифицирован МКС; однако в мае 2019 года рабочая группа по антропоцену проголосовала за подачу официального предложения в МКС для создания серии/эпохи антропоцена. [65] Тем не менее, определение антропоцена как геологического периода времени, а не геологического события остается спорным и сложным. [66] [67] [68] [69]

Предложения по пересмотру докриогеновой хронологии

Шилдс и др. 2021 г.

Международная рабочая группа ICS по докриогеновому хроностратиграфическому подразделению разработала шаблон для улучшения докриогеновой геологической шкалы времени на основе данных о горных породах, чтобы привести ее в соответствие с посттонийской геологической шкалой времени. [6] В этой работе дана оценка геологической истории определенных в настоящее время эонов и эр докембрия, [примечание 3] и предложений в книгах «Геологическая шкала времени» 2004, [70] 2012, [3] и 2020 годов. [71] Их рекомендуемые пересмотры [6] докриогеновой геологической шкалы времени были следующими (изменения по сравнению с текущей шкалой [v2023/09] выделены курсивом):

Предлагаемая хронология докембрийского периода (Shield et al. 2021, рабочая группа ICS по докриогеновой хроностратиграфии), показанная в масштабе: [примечание 6]

Текущая шкала времени докембрийского периода ICC (v2023/09), показанная в масштабе:

Ван Кранендонк и др. 2012 (ГТС2012)

Книга Geologic Time Scale 2012 была последней коммерческой публикацией международной хроностратиграфической карты, тесно связанной с ICS. [2] Она включала предложение о существенном пересмотре докриогеновой шкалы времени для отражения таких важных событий, как формирование Солнечной системы и Великое окислительное событие , среди прочих, в то же время сохраняя большую часть предыдущей хроностратиграфической номенклатуры для соответствующего временного интервала. [72] По состоянию на апрель 2022 года эти предложенные изменения не были приняты ICS. Предложенные изменения (изменения по сравнению с текущей шкалой [v2023/09]) выделены курсивом:

Предлагаемая шкала времени докембрийского периода (GTS2012), показанная в масштабе:

Текущая шкала времени докембрийского периода ICC (v2023/09), показанная в масштабе:

Таблица геологического времени

В следующей таблице суммированы основные события и характеристики подразделений, составляющих геологическую шкалу времени Земли. Эта таблица организована так, что самые последние геологические периоды находятся вверху, а самые старые внизу. Высота каждой записи в таблице не соответствует продолжительности каждого подразделения времени. Таким образом, эта таблица не масштабируется и неточно представляет относительные временные промежутки каждой геохронологической единицы. Хотя фанерозойский эон выглядит длиннее остальных, он охватывает всего ~539 миллионов лет (~12% истории Земли), в то время как предыдущие три эона [примечание 3] в совокупности охватывают ~3461 миллион лет (~76% истории Земли). Этот уклон в сторону самого последнего эона отчасти обусловлен относительным недостатком информации о событиях, которые произошли в течение первых трех эонов по сравнению с текущим эоном (фанерозой). [6] [77] Использование подсерий/подэпох было одобрено МКП. [17]

Содержание таблицы основано на официальном ICC, созданном и поддерживаемом ICS, которые также предоставляют онлайн-интерактивную версию этой диаграммы. Интерактивная версия основана на сервисе, предоставляющем машиночитаемое представление Resource Description Framework / Web Ontology Language временной шкалы, которое доступно через проект GeoSciML Комиссии по управлению и применению геонаучной информации в качестве сервиса [78] и в конечной точке SPARQL . [79] [80]

Non-Earth based geologic time scales

Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus, Mars and the Earth's Moon. Dominantly fluid planets, such as the giant planets, do not comparably preserve their history. Apart from the Late Heavy Bombardment, events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to the Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate.[note 13]

Lunar (selenological) time scale

The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering, volcanism, and erosion. This process of dividing the Moon's history in this manner means that the time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods (Pre-Nectarian, Nectarian, Imbrian, Eratosthenian, Copernican), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale.[97] The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with a known geological context.

Early ImbrianLate ImbrianPre-NectarianNectarianEratosthenianCopernican period
Millions of years before present


Martian geologic time scale

The geological history of Mars has been divided into two alternate time scales. The first time scale for Mars was developed by studying the impact crater densities on the Martian surface. Through this method four periods have been defined, the Pre-Noachian (~4,500–4,100 Ma), Noachian (~4,100–3,700 Ma), Hesperian (~3,700–3,000 Ma), and Amazonian (~3,000 Ma to present).[98][99]

Pre-NoachianNoachianHesperianAmazonian (Mars)
Martian time periods (millions of years ago)

Epochs:

A second time scale based on mineral alteration observed by the OMEGA spectrometer on board the Mars Express. Using this method, three periods were defined, the Phyllocian (~4,500–4,000 Ma), Theiikian (~4,000–3,500 Ma), and Siderikian (~3,500 Ma to present).[100]

See also

Notes

  1. ^ It is now known that not all sedimentary layers are deposited purely horizontally, but this principle is still a useful concept.
  2. ^ Time spans of geologic time units vary broadly, and there is no numeric limitation on the time span they can represent. They are limited by the time span of the higher rank unit they belong to, and to the chronostratigraphic boundaries they are defined by.
  3. ^ a b c Precambrian or pre-Cambrian is an informal geological term for time before the Cambrian period
  4. ^ a b The Tertiary is a now obsolete geologic system/period spanning from 66 Ma to 2.6 Ma. It has no exact equivalent in the modern ICC, but is approximately equivalent to the merged Palaeogene and Neogene systems/periods.[18][19]
  5. ^ a b Geochronometric date for the Ediacaran has been adjusted to reflect ICC v2023/09 as the formal definition for the base of the Cambrian has not changed.
  6. ^ Kratian time span is not given in the article. It lies within the Neoarchean, and prior to the Siderian. The position shown here is an arbitrary division.
  7. ^ The dates and uncertainties quoted are according to the International Commission on Stratigraphy International Chronostratigraphic chart (v2023/06). An * indicates boundaries where a Global Boundary Stratotype Section and Point has been internationally agreed.
  8. ^ a b c d For more information on this, see Atmosphere of Earth#Evolution of Earth's atmosphere, Carbon dioxide in the Earth's atmosphere, and climate change. Specific graphs of reconstructed CO2 levels over the past ~550, 65, and 5 million years can be seen at File:Phanerozoic Carbon Dioxide.png, File:65 Myr Climate Change.png, File:Five Myr Climate Change.png, respectively.
  9. ^ The Mississippian and Pennsylvanian are official sub-systems/sub-periods.
  10. ^ a b This is divided into Lower/Early, Middle, and Upper/Late series/epochs
  11. ^ a b c d e f g h i j k l m Defined by absolute age (Global Standard Stratigraphic Age).
  12. ^ The age of the oldest measurable craton, or continental crust, is dated to 3,600–3,800 Ma.
  13. ^ Not enough is known about extra-solar planets for worthwhile speculation.

References

  1. ^ a b c "Statues & Guidelines". International Commission on Stratigraphy. Retrieved 5 April 2022.
  2. ^ a b c d e f g h i Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. (1 September 2013). "The ICS International Chronostratigraphic Chart". Episodes. 36 (3) (updated ed.): 199–204. doi:10.18814/epiiugs/2013/v36i3/002. ISSN 0705-3797. S2CID 51819600.
  3. ^ a b c d e f g h i j k l m Van Kranendonk, Martin J.; Altermann, Wladyslaw; Beard, Brian L.; Hoffman, Paul F.; Johnson, Clark M.; Kasting, James F.; Melezhik, Victor A.; Nutman, Allen P. (2012), "A Chronostratigraphic Division of the Precambrian", The Geologic Time Scale, Elsevier, pp. 299–392, doi:10.1016/b978-0-444-59425-9.00016-0, ISBN 978-0-444-59425-9, retrieved 5 April 2022
  4. ^ "International Commission on Stratigraphy". International Geological Time Scale. Retrieved 5 June 2022.
  5. ^ a b c d Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London. 190 (1): 205–221. Bibcode:2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14. S2CID 130092094.
  6. ^ a b c d e Shields, Graham A.; Strachan, Robin A.; Porter, Susannah M.; Halverson, Galen P.; Macdonald, Francis A.; Plumb, Kenneth A.; de Alvarenga, Carlos J.; Banerjee, Dhiraj M.; Bekker, Andrey; Bleeker, Wouter; Brasier, Alexander (2022). "A template for an improved rock-based subdivision of the pre-Cryogenian timescale". Journal of the Geological Society. 179 (1): jgs2020–222. Bibcode:2022JGSoc.179..222S. doi:10.1144/jgs2020-222. ISSN 0016-7649. S2CID 236285974.
  7. ^ a b Steno, Nicolaus (1669). Nicolai Stenonis de solido intra solidvm natvraliter contento dissertationis prodromvs ad serenissimvm Ferdinandvm II ... (in Latin). W. Junk.
  8. ^ a b Hutton, James (1795). Theory of the Earth. Vol. 1. Edinburgh.
  9. ^ a b Lyell, Sir Charles (1832). Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation. Vol. 1. London: John Murray.
  10. ^ "International Commission on Stratigraphy - Stratigraphic Guide - Chapter 9. Chronostratigraphic Units". stratigraphy.org. Retrieved 16 April 2024.
  11. ^ a b c d e f g h i j k l "Chapter 9. Chronostratigraphic Units". stratigraphy.org. International Commission on Stratigraphy. Retrieved 2 April 2022.
  12. ^ a b c "Chapter 3. Definitions and Procedures". stratigraphy.org. International Commission on Stratigraphy. Retrieved 2 April 2022.
  13. ^ "Global Boundary Stratotype Section and Points". stratigraphy.org. International Commission on Stratigraphy. Retrieved 2 April 2022.
  14. ^ Knoll, Andrew; Walter, Malcolm; Narbonne, Guy; Christie-Blick, Nicholas (2006). "The Ediacaran Period: a new addition to the geologic time scale". Lethaia. 39 (1): 13–30. Bibcode:2006Letha..39...13K. doi:10.1080/00241160500409223.
  15. ^ Remane, Jürgen; Bassett, Michael G; Cowie, John W; Gohrbandt, Klaus H; Lane, H Richard; Michelsen, Olaf; Naiwen, Wang; the cooperation of members of ICS (1 September 1996). "Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS)". Episodes. 19 (3): 77–81. doi:10.18814/epiiugs/1996/v19i3/007. ISSN 0705-3797.
  16. ^ a b c d e Michael Allaby (2020). A dictionary of geology and earth sciences (Fifth ed.). Oxford. ISBN 978-0-19-187490-1. OCLC 1137380460.{{cite book}}: CS1 maint: location missing publisher (link)
  17. ^ a b Aubry, Marie-Pierre; Piller, Werner E.; Gibbard, Philip L.; Harper, David A. T.; Finney, Stanley C. (1 March 2022). "Ratification of subseries/subepochs as formal rank/units in international chronostratigraphy". Episodes. 45 (1): 97–99. doi:10.18814/epiiugs/2021/021016. ISSN 0705-3797. S2CID 240772165.
  18. ^ Head, Martin J.; Gibbard, Philip; Salvador, Amos (1 June 2008). "The Quaternary: its character and definition". Episodes. 31 (2): 234–238. doi:10.18814/epiiugs/2008/v31i2/009. ISSN 0705-3797.
  19. ^ Gibbard, Philip L.; Head, Martin J.; Walker, Michael J. C.; the Subcommission on Quaternary Stratigraphy (20 January 2010). "Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma". Journal of Quaternary Science. 25 (2): 96–102. Bibcode:2010JQS....25...96G. doi:10.1002/jqs.1338. ISSN 0267-8179.
  20. ^ Desnoyers, J. (1829). "Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares" [Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins]. Annales des Sciences Naturelles (in French). 16: 171–214, 402–491. From p. 193: "Ce que je désirerais ... dont il faut également les distinguer." (What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations – Quaternary (1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "Quaternary" because the distinction between Quaternary and Tertiary deposits wasn't clear. From p. 193: "La crainte de voir mal comprise ... que ceux du bassin de la Seine." (The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)
  21. ^ d'Halloy, d'O., J.-J. (1822). "Observations sur un essai de carte géologique de la France, des Pays-Bas, et des contrées voisines" [Observations on a trial geological map of France, the Low Countries, and neighboring countries]. Annales des Mines. 7: 353–376.{{cite journal}}: CS1 maint: multiple names: authors list (link) From page 373: "La troisième, qui correspond à ce qu'on a déja appelé formation de la craie, sera désigné par le nom de terrain crétacé." (The third, which corresponds to what was already called the "chalk formation", will be designated by the name "chalky terrain".)
  22. ^ Humboldt, Alexander von (1799). Ueber die unterirdischen Gasarten und die Mittel ihren Nachtheil zu vermindern: ein Beytrag zur Physik der praktischen Bergbaukunde (in German). Vieweg.
  23. ^ Brongniart, Alexandre (1770-1847) Auteur du texte (1829). Tableau des terrains qui composent l'écorce du globe ou Essai sur la structure de la partie connue de la terre . Par Alexandre Brongniart,... (in French).{{cite book}}: CS1 maint: numeric names: authors list (link)
  24. ^ Ogg, J.G.; Hinnov, L.A.; Huang, C. (2012), "Jurassic", The Geologic Time Scale, Elsevier, pp. 731–791, doi:10.1016/b978-0-444-59425-9.00026-3, ISBN 978-0-444-59425-9, retrieved 1 May 2022
  25. ^ Murchison; Murchison, Sir Roderick Impey; Verneuil; Keyserling, Graf Alexander (1842). On the Geological Structure of the Central and Southern Regions of Russia in Europe, and of the Ural Mountains. Print. by R. and J.E. Taylor.
  26. ^ Phillips, John (1835). Illustrations of the Geology of Yorkshire: Or, A Description of the Strata and Organic Remains: Accompanied by a Geological Map, Sections and Plates of the Fossil Plants and Animals ... J. Murray.
  27. ^ Sedgwick, A.; Murchison, R. I. (1 January 1840). "XLIII.--On the Physical Structure of Devonshire, and on the Subdivisions and Geological Relations of its older stratified Deposits, &c". Transactions of the Geological Society of London. s2-5 (3): 633–703. doi:10.1144/transgslb.5.3.633. ISSN 2042-5295. S2CID 128475487.
  28. ^ Murchison, Roderick Impey (1835). "VII. On the silurian system of rocks". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 7 (37): 46–52. doi:10.1080/14786443508648654. ISSN 1941-5966.
  29. ^ Lapworth, Charles (1879). "I.—On the Tripartite Classification of the Lower Palæozoic Rocks". Geological Magazine. 6 (1): 1–15. Bibcode:1879GeoM....6....1L. doi:10.1017/S0016756800156560. ISSN 0016-7568. S2CID 129165105.
  30. ^ Bassett, Michael G. (1 June 1979). "100 Years of Ordovician Geology". Episodes. 2 (2): 18–21. doi:10.18814/epiiugs/1979/v2i2/003. ISSN 0705-3797.
  31. ^ Chisholm, Hugh, ed. (1911). "Cambria" . Encyclopædia Britannica (11th ed.). Cambridge University Press.
  32. ^ Butcher, Andy (26 May 2004). "Re: Ediacaran". LISTSERV 16.0 - AUSTRALIAN-LINGUISTICS-L Archives. Archived from the original on 23 October 2007. Retrieved 19 July 2011.
  33. ^ "Place Details: Ediacara Fossil Site – Nilpena, Parachilna, SA, Australia". Department of Sustainability, Environment, Water, Population and Communities. Australian Heritage Database. Commonwealth of Australia. Archived from the original on 3 June 2011. Retrieved 19 July 2011.
  34. ^ a b Holmes, Arthur (9 June 1911). "The association of lead with uranium in rock-minerals, and its application to the measurement of geological time". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 85 (578): 248–256. Bibcode:1911RSPSA..85..248H. doi:10.1098/rspa.1911.0036. ISSN 0950-1207.
  35. ^ a b c d e f g h i j k Fischer, Alfred G.; Garrison, Robert E. (2009). "The role of the Mediterranean region in the development of sedimentary geology: a historical overview". Sedimentology. 56 (1): 3–41. Bibcode:2009Sedim..56....3F. doi:10.1111/j.1365-3091.2008.01009.x. S2CID 128604255.
  36. ^ Sivin, Nathan (1995). Science in ancient China: researches and reflections. Variorum. ISBN 0-86078-492-4. OCLC 956775994.
  37. ^ Adams, Frank D. (1938). The Birth and Development of the Geological Sciences. Williams & Wilkins. ISBN 0-486-26372-X. OCLC 165626104.
  38. ^ Rudwick, M. J. S. (1985). The meaning of fossils : episodes in the history of palaeontology. Chicago: University of Chicago Press. ISBN 0-226-73103-0. OCLC 11574066.
  39. ^ McCurdy, Edward (1938). The notebooks of Leonardo da Vinci. New York: Reynal & Hitchcock. OCLC 2233803.
  40. ^ Kardel, Troels; Maquet, Paul (2018), "2.27 the Prodromus to a Dissertation on a Solid Naturally Contained within a Solid", Nicolaus Steno, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 763–825, doi:10.1007/978-3-662-55047-2_38, ISBN 978-3-662-55046-5, retrieved 20 April 2022
  41. ^ Burnet, Thomas (1681). Telluris Theoria Sacra: orbis nostri originen et mutationes generales, quasi am subiit aut olim subiturus est, complectens. Libri duo priores de Diluvio & Paradiso (in Latin). London: G. Kettiby.
  42. ^ Werner, Abraham Gottlob (1787). Kurze Klassifikation und Beschreibung der verschiedenen Gebirgsarten (in German). Dresden: Walther.
  43. ^ Moro, Anton Lazzaro (1740). De'crostacei e degli altri marini corpi che si truovano su'monti (in Italian). Appresso Stefano Monti.
  44. ^ Hutton, James (1788). "X. Theory of the Earth; or an Investigation of the Laws observable in the Composition, Dissolution, and Restoration of Land upon the Globe ". Transactions of the Royal Society of Edinburgh. 1 (2): 209–304. doi:10.1017/S0080456800029227. ISSN 0080-4568. S2CID 251578886.
  45. ^ Hutton, James (1795). Theory of the Earth. Vol. 2. Edinburgh.
  46. ^ Playfair, John (1802). Illustrations of the Huttonian theory of the earth. Digitised by London Natural History Museum Library. Edinburgh: Neill & Co.
  47. ^ Lyell, Sir Charles (1832). Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation. Vol. 2. London: John Murray.
  48. ^ Lyell, Sir Charles (1834). Principles of Geology: Being an Inquiry how for the Former Changes of the Earth's Surface are Referrable to Causes Now in Operation. Vol. 3. London: John Murray.
  49. ^ Holmes, Arthur (1913). The age of the earth. Gerstein - University of Toronto. London, Harper.
  50. ^ a b Lewis, Cherry L. E. (2001). "Arthur Holmes' vision of a geological timescale". Geological Society, London, Special Publications. 190 (1): 121–138. Bibcode:2001GSLSP.190..121L. doi:10.1144/GSL.SP.2001.190.01.10. ISSN 0305-8719. S2CID 128686640.
  51. ^ Soddy, Frederick (4 December 1913). "Intra-atomic Charge". Nature. 92 (2301): 399–400. Bibcode:1913Natur..92..399S. doi:10.1038/092399c0. ISSN 0028-0836. S2CID 3965303.
  52. ^ Holmes, A. (1 January 1959). "A revised geological time-scale". Transactions of the Edinburgh Geological Society. 17 (3): 183–216. doi:10.1144/transed.17.3.183. ISSN 0371-6260. S2CID 129166282.
  53. ^ "A Revised Geological Time-Scale". Nature. 187 (4731): 27–28. 1960. Bibcode:1960Natur.187T..27.. doi:10.1038/187027d0. ISSN 0028-0836. S2CID 4179334.
  54. ^ Harrison, James M. (1 March 1978). "The Roots of IUGS". Episodes. 1 (1): 20–23. doi:10.18814/epiiugs/1978/v1i1/005. ISSN 0705-3797.
  55. ^ International Union of Geological Sciences. Commission on Stratigraphy (1986). Guidelines and statutes of the International Commission on Stratigraphy (ICS). J. W. Cowie. Frankfurt a.M.: Herausgegeben von der Senckenbergischen Naturforschenden Gesellschaft. ISBN 3-924500-19-3. OCLC 14352783.
  56. ^ W. B. Harland (1982). A geologic time scale. Cambridge [England]: Cambridge University Press. ISBN 0-521-24728-4. OCLC 8387993.
  57. ^ W. B. Harland (1990). A geologic time scale 1989. Cambridge: Cambridge University Press. ISBN 0-521-38361-7. OCLC 20930970.
  58. ^ F. M. Gradstein; James G. Ogg; A. Gilbert Smith (2004). A geologic time scale 2004. Cambridge, UK: Cambridge University Press. ISBN 0-511-08201-0. OCLC 60770922.
  59. ^ Gradstein, Felix M.; Ogg, James G.; van Kranendonk, Martin (23 July 2008). "On the Geologic Time Scale 2008". Newsletters on Stratigraphy. 43 (1): 5–13. doi:10.1127/0078-0421/2008/0043-0005. ISSN 0078-0421.
  60. ^ a b c d e f g h i j k l m F. M. Gradstein (2012). The geologic time scale 2012. Volume 2 (1st ed.). Amsterdam: Elsevier. ISBN 978-0-444-59448-8. OCLC 808340848.
  61. ^ a b Ogg, James G. (2016). A concise geologic time scale 2016. Gabi Ogg, F. M. Gradstein. Amsterdam, Netherlands: Elsevier. ISBN 978-0-444-59468-6. OCLC 949988705.
  62. ^ a b F. M. Gradstein; James G. Ogg; Mark D. Schmitz; Gabi Ogg (2020). Geologic time scale 2020. Amsterdam, Netherlands. ISBN 978-0-12-824361-9. OCLC 1224105111.{{cite book}}: CS1 maint: location missing publisher (link)
  63. ^ Crutzen, Paul J.; Stoermer, Eugene F. (2021), Benner, Susanne; Lax, Gregor; Crutzen, Paul J.; Pöschl, Ulrich (eds.), "The 'Anthropocene' (2000)", Paul J. Crutzen and the Anthropocene: A New Epoch in Earth's History, The Anthropocene: Politik—Economics—Society—Science, vol. 1, Cham: Springer International Publishing, pp. 19–21, doi:10.1007/978-3-030-82202-6_2, ISBN 978-3-030-82201-9, S2CID 245639062, retrieved 15 April 2022
  64. ^ "Working Group on the 'Anthropocene' | Subcommission on Quaternary Stratigraphy". Archived from the original on 7 April 2022. Retrieved 17 April 2022.
  65. ^ Subramanian, Meera (21 May 2019). "Anthropocene now: influential panel votes to recognise Earth's new epoch". Nature: d41586–019–01641–5. doi:10.1038/d41586-019-01641-5. ISSN 0028-0836. PMID 32433629. S2CID 182238145.
  66. ^ Gibbard, Philip L.; Bauer, Andrew M.; Edgeworth, Matthew; Ruddiman, William F.; Gill, Jacquelyn L.; Merritts, Dorothy J.; Finney, Stanley C.; Edwards, Lucy E.; Walker, Michael J. C.; Maslin, Mark; Ellis, Erle C. (15 November 2021). "A practical solution: the Anthropocene is a geological event, not a formal epoch". Episodes. 45 (4): 349–357. doi:10.18814/epiiugs/2021/021029. ISSN 0705-3797. S2CID 244165877.
  67. ^ Head, Martin J.; Steffen, Will; Fagerlind, David; Waters, Colin N.; Poirier, Clement; Syvitski, Jaia; Zalasiewicz, Jan A.; Barnosky, Anthony D.; Cearreta, Alejandro; Jeandel, Catherine; Leinfelder, Reinhold (15 November 2021). "The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch". Episodes. 45 (4): 359–376. doi:10.18814/epiiugs/2021/021031. ISSN 0705-3797. S2CID 244145710.
  68. ^ Zalasiewicz, Jan; Waters, Colin N.; Ellis, Erle C.; Head, Martin J.; Vidas, Davor; Steffen, Will; Thomas, Julia Adeney; Horn, Eva; Summerhayes, Colin P.; Leinfelder, Reinhold; McNeill, J. R. (2021). "The Anthropocene: Comparing Its Meaning in Geology (Chronostratigraphy) with Conceptual Approaches Arising in Other Disciplines". Earth's Future. 9 (3). Bibcode:2021EaFut...901896Z. doi:10.1029/2020EF001896. ISSN 2328-4277. S2CID 233816527.
  69. ^ Bauer, Andrew M.; Edgeworth, Matthew; Edwards, Lucy E.; Ellis, Erle C.; Gibbard, Philip; Merritts, Dorothy J. (16 September 2021). "Anthropocene: event or epoch?". Nature. 597 (7876): 332. Bibcode:2021Natur.597..332B. doi:10.1038/d41586-021-02448-z. ISSN 0028-0836. PMID 34522014. S2CID 237515330.
  70. ^ Bleeker, W. (17 March 2005), Gradstein, Felix M.; Ogg, James G.; Smith, Alan G. (eds.), "Toward a "natural" Precambrian time scale", A Geologic Time Scale 2004 (1 ed.), Cambridge University Press, pp. 141–146, doi:10.1017/cbo9780511536045.011, ISBN 978-0-521-78673-7, retrieved 9 April 2022
  71. ^ Strachan, R.; Murphy, J.B.; Darling, J.; Storey, C.; Shields, G. (2020), "Precambrian (4.56–1 Ga)", Geologic Time Scale 2020, Elsevier, pp. 481–493, doi:10.1016/b978-0-12-824360-2.00016-4, ISBN 978-0-12-824360-2, S2CID 229513433, retrieved 9 April 2022
  72. ^ Van Kranendonk, Martin J. (2012). "A Chronostratigraphic Division of the Precambrian". In Felix M. Gradstein; James G. Ogg; Mark D. Schmitz; abi M. Ogg (eds.). The geologic time scale 2012 (1st ed.). Amsterdam: Elsevier. pp. 359–365. doi:10.1016/B978-0-444-59425-9.00016-0. ISBN 978-0-44-459425-9.
  73. ^ a b c Goldblatt, C.; Zahnle, K. J.; Sleep, N. H.; Nisbet, E. G. (2010). "The Eons of Chaos and Hades". Solid Earth. 1 (1): 1–3. Bibcode:2010SolE....1....1G. doi:10.5194/se-1-1-2010.
  74. ^ Chambers, John E. (July 2004). "Planetary accretion in the inner Solar System" (PDF). Earth and Planetary Science Letters. 223 (3–4): 241–252. Bibcode:2004E&PSL.223..241C. doi:10.1016/j.epsl.2004.04.031. Archived (PDF) from the original on 19 April 2012.
  75. ^ El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; et al. (2014). "The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity". PLOS ONE. 9 (6): e99438. Bibcode:2014PLoSO...999438E. doi:10.1371/journal.pone.0099438. PMC 4070892. PMID 24963687.
  76. ^ El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Roberto; Mazurier, Arnaud; Hammarlund, Emma U.; et al. (2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago" (PDF). Nature. 466 (7302): 100–104. Bibcode:2010Natur.466..100A. doi:10.1038/nature09166. PMID 20596019. S2CID 4331375.[permanent dead link]
  77. ^ "Geological time scale". Digital Atlas of Ancient Life. Paleontological Research Institution. Retrieved 17 January 2022.
  78. ^ "Geologic Timescale Elements in the International Chronostratigraphic Chart". Retrieved 3 August 2014.
  79. ^ Cox, Simon J. D. "SPARQL endpoint for CGI timescale service". Archived from the original on 6 August 2014. Retrieved 3 August 2014.
  80. ^ Cox, Simon J. D.; Richard, Stephen M. (2014). "A geologic timescale ontology and service". Earth Science Informatics. 8: 5–19. doi:10.1007/s12145-014-0170-6. S2CID 42345393.
  81. ^ Hoag, Colin; Svenning, Jens-Christian (17 October 2017). "African Environmental Change from the Pleistocene to the Anthropocene". Annual Review of Environment and Resources. 42 (1): 27–54. doi:10.1146/annurev-environ-102016-060653. ISSN 1543-5938. Archived from the original on 1 May 2022. Retrieved 5 June 2022.
  82. ^ Bartoli, G; Sarnthein, M; Weinelt, M; Erlenkeuser, H; Garbe-Schönberg, D; Lea, D.W (2005). "Final closure of Panama and the onset of northern hemisphere glaciation". Earth and Planetary Science Letters. 237 (1–2): 33–44. Bibcode:2005E&PSL.237...33B. doi:10.1016/j.epsl.2005.06.020.
  83. ^ a b Tyson, Peter (October 2009). "NOVA, Aliens from Earth: Who's who in human evolution". PBS. Retrieved 8 October 2009.
  84. ^ Gannon, Colin (26 April 2013). "Understanding the Middle Miocene Climatic Optimum: Evaluation of Deuterium Values (δD) Related to Precipitation and Temperature". Honors Projects in Science and Technology.
  85. ^ a b c d Royer, Dana L. (2006). "CO2-forced climate thresholds during the Phanerozoic" (PDF). Geochimica et Cosmochimica Acta. 70 (23): 5665–75. Bibcode:2006GeCoA..70.5665R. doi:10.1016/j.gca.2005.11.031. Archived from the original (PDF) on 27 September 2019. Retrieved 6 August 2015.
  86. ^ "Here's What the Last Common Ancestor of Apes and Humans Looked Like". Live Science. 10 August 2017.
  87. ^ Nengo, Isaiah; Tafforeau, Paul; Gilbert, Christopher C.; Fleagle, John G.; Miller, Ellen R.; Feibel, Craig; Fox, David L.; Feinberg, Josh; Pugh, Kelsey D.; Berruyer, Camille; Mana, Sara (2017). "New infant cranium from the African Miocene sheds light on ape evolution". Nature. 548 (7666): 169–174. Bibcode:2017Natur.548..169N. doi:10.1038/nature23456. ISSN 0028-0836. PMID 28796200. S2CID 4397839.
  88. ^ Deconto, Robert M.; Pollard, David (2003). "Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2" (PDF). Nature. 421 (6920): 245–249. Bibcode:2003Natur.421..245D. doi:10.1038/nature01290. PMID 12529638. S2CID 4326971.
  89. ^ Medlin, L. K.; Kooistra, W. H. C. F.; Gersonde, R.; Sims, P. A.; Wellbrock, U. (1997). "Is the origin of the diatoms related to the end-Permian mass extinction?". Nova Hedwigia. 65 (1–4): 1–11. doi:10.1127/nova.hedwigia/65/1997/1. hdl:10013/epic.12689.
  90. ^ Williams, Joshua J.; Mills, Benjamin J. W.; Lenton, Timothy M. (2019). "A tectonically driven Ediacaran oxygenation event". Nature Communications. 10 (1): 2690. Bibcode:2019NatCo..10.2690W. doi:10.1038/s41467-019-10286-x. ISSN 2041-1723. PMC 6584537. PMID 31217418.
  91. ^ Naranjo-Ortiz, Miguel A.; Gabaldón, Toni (25 April 2019). "Fungal evolution: major ecological adaptations and evolutionary transitions". Biological Reviews of the Cambridge Philosophical Society. 94 (4). Cambridge Philosophical Society (Wiley): 1443–1476. doi:10.1111/brv.12510. ISSN 1464-7931. PMC 6850671. PMID 31021528. S2CID 131775942.
  92. ^ Žárský, Jakub; Žárský, Vojtěch; Hanáček, Martin; Žárský, Viktor (27 January 2022). "Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split". Frontiers in Plant Science. 12: 735020. doi:10.3389/fpls.2021.735020. ISSN 1664-462X. PMC 8829067. PMID 35154170.
  93. ^ Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (2004). "A Molecular Timeline for the Origin of Photosynthetic Eukaryotes". Molecular Biology and Evolution. 21 (5): 809–818. doi:10.1093/molbev/msh075. ISSN 1537-1719. PMID 14963099.
  94. ^ Bowring, Samuel A.; Williams, Ian S. (1999). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology. 134 (1): 3. Bibcode:1999CoMP..134....3B. doi:10.1007/s004100050465. S2CID 128376754.
  95. ^ Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Maruyama, Shigenori (2007), Chapter 3.1 the Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution, Developments in Precambrian Geology, vol. 15, Elsevier, pp. 127–147, doi:10.1016/s0166-2635(07)15031-3, ISBN 978-0-444-52810-0, retrieved 1 May 2022
  96. ^ Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago". Nature. 409 (6817): 175–178. doi:10.1038/35051550. ISSN 0028-0836. PMID 11196637. S2CID 4319774.
  97. ^ Wilhelms, Don E. (1987). The geologic history of the Moon. Professional Paper. United States Geological Survey. doi:10.3133/pp1348.
  98. ^ Tanaka, Kenneth L. (1986). "The stratigraphy of Mars". Journal of Geophysical Research. 91 (B13): E139. Bibcode:1986JGR....91E.139T. doi:10.1029/JB091iB13p0E139. ISSN 0148-0227.
  99. ^ Carr, Michael H.; Head, James W. (1 June 2010). "Geologic history of Mars". Earth and Planetary Science Letters. Mars Express after 6 Years in Orbit: Mars Geology from Three-Dimensional Mapping by the High Resolution Stereo Camera (HRSC) Experiment. 294 (3): 185–203. Bibcode:2010E&PSL.294..185C. doi:10.1016/j.epsl.2009.06.042. ISSN 0012-821X.
  100. ^ Bibring, Jean-Pierre; Langevin, Yves; Mustard, John F.; Poulet, François; Arvidson, Raymond; Gendrin, Aline; Gondet, Brigitte; Mangold, Nicolas; Pinet, P.; Forget, F.; Berthé, Michel (21 April 2006). "Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data". Science. 312 (5772): 400–404. Bibcode:2006Sci...312..400B. doi:10.1126/science.1122659. ISSN 0036-8075. PMID 16627738. S2CID 13968348.

Further reading

External links