stringtranslate.com

Волновод (радиочастота)

Коллекция стандартных волноводных компонентов.

В радиочастотной технике и технике связи волновод представляет собой полую металлическую трубу, используемую для передачи радиоволн . [1] Этот тип волновода используется в качестве линии передачи , в основном на микроволновых частотах, для таких целей, как подключение микроволновых передатчиков и приемников к их антеннам , в таком оборудовании, как микроволновые печи , радары , спутниковая связь и микроволновые радиоканалы.

Электромагнитные волны в волноводе (с металлическими трубками) можно представить как движущиеся по волноводу по зигзагообразной траектории, неоднократно отражаясь между противоположными стенками проводника. Для частного случая прямоугольного волновода на этой точке зрения можно провести точный анализ. Распространение в диэлектрическом волноводе можно рассматривать таким же образом: волны удерживаются в диэлектрике за счет полного внутреннего отражения от его поверхности. Некоторые конструкции, такие как безызлучательные диэлектрические волноводы и линия Губо , используют как металлические стенки, так и диэлектрические поверхности для ограничения волны.

Принцип

Пример волноводов и диплексера в радаре управления воздушным движением

В зависимости от частоты волноводы могут быть изготовлены как из проводящих, так и из диэлектрических материалов. Как правило, чем ниже передаваемая частота, тем больше размер волновода. Например, естественный волновод, который формирует Земля, заданный размерами между проводящей ионосферой и землей, а также окружностью на средней высоте Земли, резонансен на частоте 7,83 Гц. Это известно как резонанс Шумана . С другой стороны, волноводы, используемые в сверхвысокочастотной (КВЧ) связи, могут иметь ширину менее миллиметра.

История

Джордж К. Саутворт , разработавший волноводы в начале 1930-х годов, перед экспериментальным волноводом длиной в милю в Bell Labs, Холмдел, Нью-Джерси, который использовал в своих исследованиях [2]
Саутворт (слева) демонстрирует волновод на собрании IRE в 1938 году, [2] показывает, как микроволны с частотой 1,5 ГГц проходят через гибкий металлический шланг длиной 7,5 м и регистрируются диодным детектором.

В 1890-е годы теоретики провели первый анализ электромагнитных волн в воздуховодах. [3] Около 1893 года Дж. Дж. Томсон вывел электромагнитные моды внутри цилиндрической металлической полости. [3] В 1897 году лорд Рэлей провел окончательный анализ волноводов; он решил краевую задачу о распространении электромагнитных волн как по проводящим трубкам, так и по диэлектрическим стержням произвольной формы. [3] [4] [5] [6] Он показал, что волны могут распространяться без затухания только в определенных нормальных модах либо с электрическим полем ( моды TE ), либо с магнитным полем ( моды TM ), перпендикулярным направлению распространения. Он также показал, что каждая мода имеет граничную частоту, ниже которой волны не распространяются. Поскольку длина волны отсечки для данной трубки была того же порядка, что и ее ширина, было ясно, что полая проводящая трубка не может передавать радиоволны, намного превышающие ее диаметр. В 1902 году Р. Х. Вебер заметил, что электромагнитные волны распространяются в трубах с меньшей скоростью, чем в свободном пространстве, и выяснил причину; что волны движутся «зигзагообразно», отражаясь от стен. [3] [5] [7]

До 1920-х годов практическая работа над радиоволнами была сосредоточена на низкочастотной части радиоспектра, поскольку эти частоты лучше подходили для связи на большие расстояния. [3] Они были намного ниже частот, которые могли распространяться даже в больших волноводах, поэтому в этот период было мало экспериментальных работ по волноводам, хотя несколько экспериментов было проведено. В лекции «Работа Герца» перед Королевским обществом 1 июня 1894 года Оливер Лодж продемонстрировал передачу 3-дюймовых радиоволн из искрового разрядника через короткий цилиндрический медный канал. [3] [8] В своих новаторских исследованиях микроволн в 1894-1900 годах Джагадиш Чандра Бос использовал короткие отрезки труб для проведения волн, поэтому некоторые источники приписывают ему изобретение волновода. [9] Однако после этого концепция радиоволн, передаваемых по трубке или воздуховоду, вышла из инженерного знания. [3]

В 1920 - е годы были разработаны первые непрерывные источники высокочастотных радиоволн: трубка Баркгаузена-Курца [10] первый генератор, который мог производить мощность на частотах УВЧ ; и магнетрон с разделенным анодом , который к 1930-м годам генерировал радиоволны частотой до 10 ГГц. [3] Это сделало возможным первое систематическое исследование микроволн в 1930-х годах. Было обнаружено, что линии передачи , используемые для передачи низкочастотных радиоволн, параллельные линии и коаксиальный кабель , имеют чрезмерные потери мощности на микроволновых частотах, что создает необходимость в новом методе передачи. [3] [10]

Волновод был разработан независимо между 1932 и 1936 годами Джорджем К. Саутвортом из Bell Telephone Laboratories [2] и Уилмером Л. Барроу из Массачусетского технологического института , которые работали, не зная друг друга. [3] [5] [6] [10] Интерес Саутворта возник во время его докторской работы в 1920-х годах, в которой он измерил диэлектрическую проницаемость воды с помощью радиочастотной линии Лехера в длинном резервуаре с водой. Он обнаружил, что даже если удалить линию Лешера, в резервуаре с водой все равно будут резонансные пики, что указывает на то, что он действует как диэлектрический волновод . [3] В Bell Labs в 1931 году он возобновил работу над диэлектрическими волноводами. К марту 1932 года он наблюдал волны в медных трубах, заполненных водой. Предыдущие работы Рэлея были забыты, а Сергей Щелкунов , математик из Bell Labs, провел теоретический анализ волноводов [3] [11] и заново открыл волноводные моды. В декабре 1933 года стало понятно, что при металлической оболочке диэлектрик излишен, и внимание переключилось на металлические волноводы.

Барроу заинтересовался высокими частотами в 1930 году, обучаясь у Арнольда Зоммерфельда в Германии. [3] В Массачусетском технологическом институте, начиная с 1932 года, он работал над высокочастотными антеннами для генерации узких лучей радиоволн для обнаружения самолетов в тумане. Он изобрел рупорную антенну и придумал использовать полую трубу в качестве питающей линии для подачи радиоволн на антенну. [3] К марту 1936 года он вывел моды распространения и частоту среза в прямоугольном волноводе. [10] Источник, который он использовал, имел большую длину волны — 40 см, поэтому для своих первых успешных экспериментов с волноводом он использовал 16-футовый участок воздуховода и 18 дюймов в диаметре. [3]

Барроу и Саутворт узнали о работе друг друга за несколько недель до того, как оба должны были представить статьи по волноводам на объединенном собрании Американского физического общества и Института радиоинженеров в мае 1936 года . механизмы распределения кредитов и разделения патентов.

Разработка сантиметрового радара во время Второй мировой войны и появление первых микроволновых трубок высокой мощности — клистрона (1938 г.) и резонаторного магнетрона (1940 г.) — привели к первому широкому использованию волновода. [10] Были изготовлены стандартные волноводные «сантехнические» компоненты с фланцами на концах, которые можно было соединить болтами. После войны в 1950-х и 60-х годах волноводы стали обычным явлением в коммерческих микроволновых системах, таких как радары аэропортов и микроволновые ретрансляционные сети, которые были построены для передачи телефонных звонков и телевизионных программ между городами.

Описание

Прямоугольный полый волновод
Гибкий волновод от радара J-диапазона
Типичное применение волновода: антенный фидер для военного радара.

В микроволновой области электромагнитного спектра волновод обычно состоит из полого металлического проводника. Эти волноводы могут иметь форму одиночных проводников с диэлектрическим покрытием или без него, например линия Губо и спиральные волноводы. Полые волноводы должны иметь диаметр в половину длины волны или более, чтобы поддерживать одну или несколько мод поперечных волн.

Волноводы могут быть заполнены газом под давлением для предотвращения образования дуги и предотвращения размножения , что позволяет передавать более высокую мощность. И наоборот, может потребоваться вакуумирование волноводов как часть вакуумированных систем (например, электронно-лучевых систем).

Волновод с прорезями обычно используется в радарах и других подобных приложениях. Волновод служит трактом подачи, а каждая щель представляет собой отдельный излучатель, образующий, таким образом, антенну. Эта структура способна генерировать диаграмму направленности для запуска электромагнитной волны в определенном, относительно узком и контролируемом направлении.

Закрытый волновод – это электромагнитный волновод: (а) трубчатый, обычно круглого или прямоугольного сечения, (б) имеющий электропроводящие стенки, (в) который может быть полым или заполненным диэлектрическим материалом, (г) который может поддерживать большое количество дискретных мод распространения, хотя только некоторые из них могут быть практичными, (e) в которой каждая дискретная мода определяет константу распространения для этой моды, (f) в которой поле в любой точке можно описать в терминах поддерживаемые моды, (g) в которых нет поля излучения , и (h) в которых разрывы и изгибы могут вызвать преобразование моды, но не излучение. [ нужна цитата ]

Размеры полого металлического волновода определяют, какие длины волн он может поддерживать и в каких режимах. Обычно волновод работает так, что присутствует только одна мода. Обычно выбирается режим наименьшего возможного порядка. Частоты ниже частоты среза направляющей не будут распространяться. Волноводы можно эксплуатировать на модах более высокого порядка или с несколькими модами, но обычно это непрактично.

Волноводы почти исключительно изготавливаются из металла и в основном из жестких конструкций. Существуют определенные типы «гофрированных» волноводов, которые способны сгибаться и сгибаться, но используются только там, где это необходимо, поскольку они ухудшают свойства распространения. Из-за распространения энергии в основном по воздуху или пространству внутри волновода, это один из типов линий передачи с наименьшими потерями, который очень предпочтителен для высокочастотных приложений, где большинство других типов передающих структур вносят большие потери. Из-за скин-эффекта на высоких частотах электрический ток вдоль стенок обычно проникает в металл внутренней поверхности лишь на несколько микрометров . Поскольку именно здесь происходит большая часть резистивных потерь, важно, чтобы проводимость внутренней поверхности поддерживалась как можно более высокой. По этой причине внутренние поверхности большинства волноводов покрыты медью , серебром или золотом .

Измерения коэффициента стоячей волны по напряжению ( КСВН ) могут быть проведены, чтобы убедиться в том, что волновод примыкает и не имеет утечек или резких изгибов. Если такие изгибы или отверстия на поверхности волновода присутствуют, это может ухудшить характеристики как передатчика, так и приемного оборудования, подключенного на обоих концах. Плохая передача через волновод также может произойти в результате накопления влаги, которая разъедает и ухудшает проводимость внутренних поверхностей, что имеет решающее значение для распространения с низкими потерями. По этой причине волноводы номинально оснащены микроволновыми окнами на внешнем конце, которые не мешают распространению, но не пропускают элементы. Влага также может стать причиной образования грибка или образования электрической дуги в мощных системах, таких как радио- или радарные передатчики. Влажность в волноводах обычно можно предотвратить с помощью силикагеля , осушителя или небольшого повышения давления в полостях волновода сухим азотом или аргоном . Канистры с силикагелем-осушителем могут быть прикреплены с помощью навинчивающихся наконечников, а системы более высокой мощности будут иметь резервуары под давлением для поддержания давления, включая устройства контроля утечек. Также может возникнуть искрение, если в токопроводящих стенках есть дыра, разрыв или неровность при передаче на высокой мощности (обычно 200 Вт или более). Монтаж волновода [12] имеет решающее значение для правильной работы волновода. Стоячие волны напряжения возникают, когда несоответствие импедансов в волноводе приводит к отражению энергии обратно в направлении, противоположном распространению. Помимо ограничения эффективной передачи энергии, эти отражения могут вызвать повышение напряжения в волноводе и повреждение оборудования.

На практике

На практике волноводы действуют как эквивалент кабелей для систем сверхвысокой частоты (СВЧ). Для таких применений желательно использовать волноводы, в которых через волновод распространяется только одна мода. При использовании прямоугольных волноводов можно спроектировать волновод таким образом, чтобы полоса частот, в которой распространяется только одна мода, составляла 2:1 (т.е. отношение края верхней полосы к краю нижней полосы было равно двум). Связь между размерами волновода и самой низкой частотой проста: если - большее из двух его измерений, то самая длинная длина волны, которая будет распространяться, равна , а самая низкая частота, таким образом, равна

В круглых волноводах максимально возможная полоса пропускания, позволяющая распространяться только одной моде, составляет всего 1,3601:1. [13]

Поскольку прямоугольные волноводы имеют гораздо большую полосу пропускания, в которой может распространяться только одна мода, существуют стандарты для прямоугольных волноводов, но не для круглых волноводов. Обычно (но не всегда) стандартные волноводы проектируются так, что

Первое условие — разрешить применение вблизи краев полосы. Второе условие ограничивает дисперсию — явление, при котором скорость распространения является функцией частоты. Это также ограничивает потери на единицу длины. Третье условие — избежать связи затухающих волн через моды более высокого порядка. Четвертое условие — это условие, обеспечивающее рабочую полосу пропускания 2:1. Хотя можно иметь рабочую полосу пропускания 2:1, когда высота меньше половины ширины, высота, равная ровно половине ширины, максимизирует мощность, которая может распространяться внутри волновода до того, как произойдет пробой диэлектрика .

Ниже представлена ​​таблица стандартных волноводов. Название волновода WR означает «прямоугольный волновод », а число представляет собой внутреннюю ширину волновода в сотых долях дюйма ( 0,01 дюйма = 0,254 мм), округленную до ближайшей сотой доли дюйма.

* Комитет по стандартизации радиокомпонентов.
По историческим причинам внешние, а не внутренние размеры этих волноводов составляют 2:1 (с толщиной стенки WG6–WG10: 0,08 дюйма (2,0 мм), WG11A–WG15: 0,064 дюйма (1,6 мм), WG16–WG17: 0,05 дюйма. (1,3 мм), WG18–WG28: 0,04 дюйма (1,0 мм)) [15]

Для частот, указанных в таблице выше, основное преимущество волноводов перед коаксиальными кабелями заключается в том, что волноводы обеспечивают распространение с меньшими потерями. Для более низких частот размеры волновода становятся непрактично большими, а для более высоких частот размеры становятся непрактично малыми (производственный допуск становится значительной частью размера волновода).

Математический анализ

Электромагнитные волноводы анализируются путем решения уравнений Максвелла или их сокращенной формы, уравнения электромагнитных волн , с граничными условиями , определяемыми свойствами материалов и их интерфейсов. Эти уравнения имеют несколько решений или режимов, которые являются собственными функциями системы уравнений. Каждый режим характеризуется частотой среза, ниже которой режим не может существовать в справочнике. Режимы распространения волновода зависят от рабочей длины волны и поляризации , а также формы и размера волновода. Продольная мода волновода представляет собой особую структуру стоячих волн , образованную волнами, заключенными в полости. Поперечные моды подразделяются на различные типы:

Волноводы с определенной симметрией можно решить методом разделения переменных . Прямоугольные волноводы можно решать в прямоугольных координатах. [16] : 143  Круглые волноводы могут быть решены в цилиндрических координатах. [16] : 198 

В полых однопроводных волноводах ТЕМ-волны невозможны. Это контрастирует с двухпроводными линиями передачи , используемыми на более низких частотах; коаксиальный кабель , параллельная проводная линия и полосковая линия , в которых возможен режим TEM. Кроме того, распространяющиеся моды (т. е. TE и TM) внутри волновода могут быть математически выражены как суперпозиция двух волн TEM. [17]

Режим с самой низкой частотой среза называется доминирующим режимом направляющей. Обычно размер направляющей выбирают таким, чтобы в рабочем диапазоне частот мог существовать только этот режим. В прямоугольных и круглых волноводах (полая труба) доминирующие моды обозначаются модой TE 1,0 и модой TE 1,1 соответственно. [18]

Диэлектрические волноводы

В диэлектрическом волноводе используется твердый диэлектрический стержень, а не полая труба. Оптическое волокно представляет собой диэлектрический проводник, предназначенный для работы на оптических частотах. Линии передачи, такие как микрополосковые , копланарные волноводы , полосковые линии или коаксиальные кабели , также могут считаться волноводами.

Диэлектрические стержневые и пластинчатые волноводы используются для проведения радиоволн, в основном на частотах миллиметровых волн и выше. [19] [20] Они ограничивают радиоволны за счет полного внутреннего отражения от скачка показателя преломления из-за изменения диэлектрической проницаемости на поверхности материала. [21] На частотах миллиметровых волн и выше металл не является хорошим проводником, поэтому металлические волноводы могут иметь возрастающее затухание. На этих длинах волн диэлектрические волноводы могут иметь меньшие потери, чем металлические волноводы. Оптическое волокно — это разновидность диэлектрического волновода, используемого на оптических длинах волн.

Одно из различий между диэлектрическими и металлическими волноводами состоит в том, что на металлической поверхности электромагнитные волны сильно ограничены; на высоких частотах электрические и магнитные поля проникают в металл на очень короткое расстояние. Напротив, поверхность диэлектрического волновода представляет собой границу раздела между двумя диэлектриками, поэтому поля волны проникают за пределы диэлектрика в виде затухающей ( нераспространяющейся) волны. [21]

Смотрите также

Рекомендации

  1. ^ Радац, Джейн. Стандартный словарь терминов IEEE по электротехнике и электронике (6-е изд.). Ассоциация стандартов IEEE. ISBN 1559378336.
  2. ^ abc Саутворт, GC (август 1936 г.). «Электрические волноводы» (PDF) . Коротковолновое ремесло . 7 (1): 198, 233 . Проверено 27 марта 2015 г.
  3. ^ abcdefghijklmnop Packard, Карл С. (сентябрь 1984 г.). «Происхождение волноводов: случай множественного повторного открытия» (PDF) . Транзакции IEEE по теории и технике микроволнового излучения . МТТ-32 (9): 961–969. Бибкод : 1984ITMTT..32..961P. CiteSeerX 10.1.1.532.8921 . дои : 10.1109/tmtt.1984.1132809 . Проверено 24 марта 2015 г. 
  4. ^ Стратт, Уильям (лорд Рэлей) (февраль 1897 г.). «О прохождении электрических волн по трубкам, или о колебаниях диэлектрических цилиндров». Философский журнал . 43 (261): 125–132. дои : 10.1080/14786449708620969.
  5. ^ abc Кайзер, Джордж (2013). Цифровая микроволновая связь: инженерные двухточечные микроволновые системы. Джон Уайли и сыновья. п. 7. ISBN 978-1118636800.
  6. ^ Аб Ли, Томас Х. (2004). Планарная микроволновая техника: Практическое руководство по теории, измерениям и схемам, Том. 1. Издательство Кембриджского университета. стр. 18, 118. ISBN. 9780521835268.
  7. ^ Вебер, Р.Х. (1902). «Электромагнитные Швингунгены в Металлрорене». Аннален дер Физик . 8 (4): 721–751. Бибкод : 1902АнП...313..721Вт. дои : 10.1002/andp.19023130802. hdl : 2027/uc1.$b24304 .
  8. Лодж, Оливер (1 июня 1984 г.). «Работа Герца». Учеб. Королевского института . 14 (88): 331–332 . Проверено 11 апреля 2015 г.
  9. ^ Эмерсон, Даррел Т. (1998). «Джагадиш Чандра Бос: исследования миллиметровых волн в XIX веке» (PDF) . Национальная радиоастрономическая обсерватория США . Проверено 11 апреля 2015 г.
  10. ^ abcdef Браун, Луи (1999). Технические и военные императивы: радиолокационная история Второй мировой войны . CRC Press. стр. 146–148. ISBN 978-1420050660.
  11. ^ Щелкунов, Сергей А. (ноябрь 1937 г.). «Электромагнитные волны в проводящих трубках». Физический обзор . 52 (10): 1078. Бибкод : 1937PhRv...52.1078S. doi : 10.1103/PhysRev.52.1078.
  12. ^ «Модуль 12: Волноводная сантехника» . Введение в волноводы . Исследовательский центр физики плазмы и пучка, факультет физики и материаловедения, Университет Чиангмая, Таиланд. 2012 . Проверено 21 сентября 2015 г.
  13. ^ Для полос пропускания ниже 2:1 их чаще выражают в процентах от центральной частоты, которая в случае 1,360:1 составляет 26,55%. Для справки: полоса пропускания 2:1 соответствует полосе пропускания 66,67 %. Причина выражения ширины полосы как отношения верхней границы полосы к нижней для полос более 66,67 % заключается в том, что в предельном случае, когда нижняя граница стремится к нулю (или верхняя граница стремится к бесконечности), полоса пропускания приближается к 200 %, что означает, что весь диапазон от 3:1 до бесконечности:1 отображается в диапазоне от 100 % до 200 %.
  14. ^ Харви, AF (июль 1955 г.). «Стандартные волноводы и муфты для СВЧ-аппаратуры». Труды IEE - Часть B: Радио и электронная техника . 102 (4): 493–499. дои : 10.1049/пи-б-1.1955.0095.
  15. ^ Баден Фуллер, AJ (1969). Микроволновые печи (1-е изд.). Пергамон Пресс. ISBN 978-0-08-006616-5.
  16. ^ ab Харрингтон, Роджер Ф. (1961), Электромагнитные поля, гармонические по времени , McGraw-Hill, стр. 7–8, hdl : 2027/mdp.39015002091489 , ISBN 0-07-026745-6
  17. ^ Сомеда, Карло Г. (1998). Электромагнитные волны . ЦРК Пресс. стр. 257–258. ISBN 0412578700..
  18. ^ Моди, Анудж Ю.; Баланис, Константин А. (2016). «Перегородка PEC-PMC внутри волновода круглого сечения для снижения частоты среза». Письма IEEE о микроволновых и беспроводных компонентах . 26 (3): 171–173. дои : 10.1109/LMWC.2016.2524529. S2CID  9594124.
  19. ^ Любченко, Дмитрий; Сергей Третьяков; Сергей Дудоров (2003). Волноводы миллиметрового диапазона. Спрингер. п. 149. ИСБН 978-1402075315.
  20. ^ Шевгаонкар, РК (2005). Электромагнитные волны. Тата МакГроу-Хилл Образование. п. 327. ИСБН 978-0070591165.
  21. ^ Аб Рана, Фархан (осень 2005 г.). «Лекция 26: Волноводы с диэлектрическими пластинами» (PDF) . Примечания к классу ECE 303: Электромагнитные поля и волны . Кафедра электротехники Корнельского университета. стр. 2–3, 10 . Проверено 21 июня 2013 г.

дальнейшее чтение

Внешние ссылки