stringtranslate.com

Позиция (геометрия)

Вектор радиуса представляет положение точки относительно начала координат O. В декартовой системе координат

В геометрии положение или вектор положения , также известный как вектор положения или радиус-вектор , представляет собой евклидов вектор , который представляет точку P в пространстве . Его длина представляет собой расстояние относительно произвольного начала отсчета O , а его направление представляет угловую ориентацию относительно заданных опорных осей. Обычно обозначаемый x , r или s , он соответствует отрезку прямой от O до P. Другими словами, именно смещение или перевод отображает начало координат в P : [1]

Термин вектор положения используется главным образом в областях дифференциальной геометрии , механики и иногда векторного исчисления . Часто это используется в двумерном или трехмерном пространстве , но может быть легко обобщено на евклидовы и аффинные пространства любой размерности . [2]

Относительное положение

Относительное положение точки Q относительно точки P представляет собой евклидов вектор, полученный в результате вычитания двух векторов абсолютного положения (каждого относительно начала координат):

где .

Относительное направление между двумя точками — это их относительное положение, нормализованное как единичный вектор :

где знаменатель — расстояние между двумя точками, . Относительное направление — это связанный вектор , в отличие от обычного направления , которое является свободным вектором .

Определение и представление

Три измерения

Пространственная кривая в 3D. Вектор положения r параметризуется скаляром t . При r = a красная линия — касательная к кривой, а синяя плоскость — нормаль к кривой.

В трех измерениях для определения местоположения точки в пространстве можно использовать любой набор трехмерных координат и соответствующих им базисных векторов — в зависимости от того, что является наиболее простым для поставленной задачи.

Обычно используется знакомая декартова система координат , а иногда и сферические полярные координаты , или цилиндрические координаты :

где tпараметр из-за их прямоугольной или круговой симметрии. Эти разные координаты и соответствующие базисные векторы представляют один и тот же вектор положения. Вместо этого можно использовать более общие криволинейные координаты , которые используются в таких контекстах, как механика сплошных сред и общая теория относительности (в последнем случае требуется дополнительная временная координата).

n измерений

Линейная алгебра позволяет абстрагировать n -мерный вектор положения. Вектор положения можно выразить как линейную комбинацию базисных векторов: [3] [4]

Набор всех векторов положения образует пространство позиций ( векторное пространство , элементами которого являются векторы положения), поскольку позиции можно складывать ( сложение векторов ) и масштабировать по длине ( скалярное умножение ) для получения другого вектора положения в пространстве. Понятие «пространство» интуитивно понятно, поскольку каждый x i ( i = 1, 2, …, n ) может иметь любое значение, совокупность значений определяет точку в пространстве.

Размерность позиционного пространства равна n ( также обозначается dim( R ) = n ). Координаты вектора r относительно базисных векторов e i равны x i . Вектор координат образует координатный вектор или n - кортеж ( x 1 , x 2 , …, x n ).

Каждая координата x i может быть параметризована рядом параметров t . Один параметр x i ( t ) будет описывать изогнутую одномерную траекторию, два параметра x i ( t 1 , t 2 ) описывают искривленную двухмерную поверхность, три x i ( t 1 , t 2 , t 3 ) описывают изогнутый трехмерный объем пространство и так далее.

Линейная оболочка базового набора B = { e 1 , e 2 , …, e n } равна позиционному пространству R , обозначаемому span( B ) = R .

Приложения

Дифференциальная геометрия

Поля векторов положения используются для описания непрерывных и дифференцируемых пространственных кривых, и в этом случае независимым параметром не обязательно должно быть время, но может быть (например, длина дуги кривой).

Механика

В любом уравнении движения вектор положения r ( t ) обычно является наиболее востребованной величиной, поскольку эта функция определяет движение частицы (т.е. точечной массы ) – ее положение относительно заданной системы координат в некоторый момент времени t .

Чтобы определить движение с точки зрения положения, каждая координата может быть параметризована временем; поскольку каждое последующее значение времени соответствует последовательности последовательных пространственных положений, заданных координатами, пределом континуума многих последовательных положений является путь, по которому движется частица.

В случае одного измерения позиция имеет только один компонент, поэтому она эффективно вырождается в скалярную координату. Это может быть, скажем, вектор в направлении x или радиальном направлении r . Эквивалентные обозначения включают

Производные

Кинематические величины классической частицы: масса  m , положение  r , скорость  v , ускорение  a.

Для вектора положения r , который является функцией времени t , производные по времени могут быть вычислены относительно t . Эти производные имеют широкое применение при изучении кинематики , теории управления , техники и других наук.

Скорость
где d rбесконечно малое смещение (вектор) .
Ускорение
Придурок

Эти названия первой, второй и третьей производных положения обычно используются в базовой кинематике. [5] В более широком смысле, производные более высокого порядка могут быть вычислены аналогичным образом. Исследование этих производных более высокого порядка может улучшить аппроксимацию исходной функции смещения. Такие члены более высокого порядка необходимы для точного представления функции смещения как суммы бесконечной последовательности , что позволяет использовать несколько аналитических методов в технике и физике.

Смотрите также

Примечания

  1. ^ Термин «смещение» в основном используется в механике, а перевод — в геометрии.
  2. ^ Келлер, Ф.Дж., Геттис, МЫ и др. (1993), с. 28–29.
  3. ^ Райли, К.Ф.; Хобсон, член парламента; Бенс, SJ (2010). Математические методы в физике и технике . Издательство Кембриджского университета. ISBN 978-0-521-86153-3.
  4. ^ Липшуц, С.; Липсон, М. (2009). Линейная алгебра . МакГроу Хилл. ISBN 978-0-07-154352-1.
  5. ^ Стюарт, Джеймс (2001). «§2.8. Производная как функция». Исчисление (2-е изд.). Брукс/Коул. ISBN 0-534-37718-1.

Рекомендации

Внешние ссылки