stringtranslate.com

Бета-функция (физика)

В теоретической физике , в частности в квантовой теории поля , бета-функция β(g) кодирует зависимость параметра связи g от масштаба энергии µ данного физического процесса , описываемого квантовой теорией поля . Это определяется как

и из-за базовой ренормгруппы он не имеет явной зависимости от µ , поэтому он зависит от µ только неявно через g . Эта зависимость от заданного таким образом масштаба энергии известна как ход параметра связи, фундаментальная особенность масштабной зависимости в квантовой теории поля, и ее явное вычисление достижимо с помощью различных математических методов.

Масштабная инвариантность

Если бета-функции квантовой теории поля исчезают, обычно при определенных значениях параметров связи, то теория называется масштабно-инвариантной . Почти все масштабно-инвариантные КТП также конформно инвариантны . Изучением таких теорий является конформная теория поля .

Параметры связи квантовой теории поля могут работать, даже если соответствующая классическая теория поля масштабно-инвариантна. В этом случае ненулевая бета-функция говорит нам, что классическая масштабная инвариантность аномальна .

Примеры

Бета-функции обычно вычисляются по какой-либо аппроксимационной схеме. Примером является теория возмущений , где предполагается, что параметры связи малы. Затем можно разложить параметры связи по степеням и обрезать члены более высокого порядка (также известные как вклады более высоких петель из-за количества петель в соответствующих графах Фейнмана ).

Вот несколько примеров бета-функций, вычисленных в теории возмущений:

Квантовая электродинамика

Однопетлевая бета-функция в квантовой электродинамике (КЭД) равна

или, что то же самое,

записанная через постоянную тонкой структуры в натуральных единицах: α = e 2 /4π . [1]

This beta function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a Landau pole. However, one cannot expect the perturbative beta function to give accurate results at strong coupling, and so it is likely that the Landau pole is an artifact of applying perturbation theory in a situation where it is no longer valid.

Quantum chromodynamics

The one-loop beta function in quantum chromodynamics with flavours and scalar colored bosons is

or

written in terms of αs = .

Assuming ns=0, if nf ≤ 16, the ensuing beta function dictates that the coupling decreases with increasing energy scale, a phenomenon known as asymptotic freedom. Conversely, the coupling increases with decreasing energy scale. This means that the coupling becomes large at low energies, and one can no longer rely on perturbation theory.

SU(N) Non-Abelian gauge theory

While the (Yang–Mills) gauge group of QCD is , and determines 3 colors, we can generalize to any number of colors, , with a gauge group . Then for this gauge group, with Dirac fermions in a representation of and with complex scalars in a representation , the one-loop beta function is

where is the quadratic Casimir of and is another Casimir invariant defined by for generators of the Lie algebra in the representation R. (For Weyl or Majorana fermions, replace by , and for real scalars, replace by .) For gauge fields (i.e. gluons), necessarily in the adjoint of , ; for fermions in the fundamental (or anti-fundamental) representation of , . Then for QCD, with , the above equation reduces to that listed for the quantum chromodynamics beta function.

This famous result was derived nearly simultaneously in 1973 by Politzer,[2] Gross and Wilczek,[3] for which the three were awarded the Nobel Prize in Physics in 2004. Unbeknownst to these authors, G. 't Hooft had announced the result in a comment following a talk by K. Symanzik at a small meeting in Marseilles in June 1972, but he never published it.[4]

Standard Model Higgs–Yukawa Couplings

In the Standard Model, quarks and leptons have "Yukawa couplings" to the Higgs boson. These determine the mass of the particle. Most all of the quarks' and leptons' Yukawa couplings are small compared to the top quark's Yukawa coupling. These Yukawa couplings change their values depending on the energy scale at which they are measured, through running. The dynamics of Yukawa couplings of quarks are determined by the renormalization group equation:

,

where is the color gauge coupling (which is a function of and associated with asymptotic freedom) and is the Yukawa coupling. This equation describes how the Yukawa coupling changes with energy scale .

The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of grand unification, GeV. Therefore, the term can be neglected in the above equation. Solving, we then find that is increased slightly at the low energy scales at which the quark masses are generated by the Higgs, GeV.

On the other hand, solutions to this equation for large initial values cause the rhs to quickly approach smaller values as we descend in energy scale. The above equation then locks to the QCD coupling . This is known as the (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling.[5][6] No matter what the initial starting value of the coupling is, if it is sufficiently large it will reach this quasi-fixed point value, and the corresponding quark mass is predicted.

The value of the quasi-fixed point is fairly precisely determined in the Standard Model, leading to a predicted top quark mass of 230  GeV.[citation needed] The observed top quark mass of 174 GeV is slightly lower than the standard model prediction by about 30% which suggests there may be more Higgs doublets beyond the single standard model Higgs boson.

Minimal Supersymmetric Standard Model

Renomalization group studies in the Minimal Supersymmetric Standard Model (MSSM) of grand unification and the Higgs–Yukawa fixed points were very encouraging that the theory was on the right track. So far, however, no evidence of the predicted MSSM particles has emerged in experiment at the Large Hadron Collider.

See also

References

  1. ^ Srednicki, Mark Allen (2017). Quantum field theory (13th printing ed.). Cambridge: Cambridge Univ. Press. p. 446. ISBN 978-0-521-86449-7.
  2. ^ H.David Politzer (1973). "Reliable Perturbative Results for Strong Interactions?". Phys. Rev. Lett. 30 (26): 1346–1349. Bibcode:1973PhRvL..30.1346P. doi:10.1103/PhysRevLett.30.1346.
  3. ^ D.J. Gross and F. Wilczek (1973). "Asymptotically Free Gauge Theories. 1". Phys. Rev. D. 8 (10): 3633–3652. Bibcode:1973PhRvD...8.3633G. doi:10.1103/PhysRevD.8.3633..
  4. ^ G. 't Hooft (1999). "When was Asymptotic Freedom discovered?". Nucl. Phys. B Proc. Suppl. 74 (1): 413–425. arXiv:hep-th/9808154. Bibcode:1999NuPhS..74..413T. doi:10.1016/S0920-5632(99)00207-8. S2CID 17360560.
  5. ^ Pendleton, B.; Ross, G.G. (1981). "Mass and Mixing Angle Predictions from Infrared Fixed points". Phys. Lett. B98 (4): 291. Bibcode:1981PhLB...98..291P. doi:10.1016/0370-2693(81)90017-4.
  6. ^ Hill, C.T. (1981). "Quark and Lepton masses from Renormalization group fixed points". Phys. Rev. D24 (3): 691. Bibcode:1981PhRvD..24..691H. doi:10.1103/PhysRevD.24.691.

Further reading