stringtranslate.com

Рэй (оптика)

Лучи и волновые фронты

В оптике луч это идеализированная геометрическая модель света или другого электромагнитного излучения , полученная путем выбора кривой , которая перпендикулярна волновым фронтам фактического света и указывает в направлении потока энергии . [1] [2] Лучи используются для моделирования распространения света через оптическую систему путем разделения реального светового поля на дискретные лучи, которые можно вычислительно распространять через систему с помощью методов трассировки лучей . Это позволяет математически анализировать или моделировать с помощью компьютера даже очень сложные оптические системы. Трассировка лучей использует приближенные решения уравнений Максвелла , которые действительны до тех пор, пока световые волны распространяются через и вокруг объектов, размеры которых намного превышают длину волны света . Лучевая оптика или геометрическая оптика не описывает такие явления, как дифракция , которые требуют теории волновой оптики . Некоторые волновые явления, такие как интерференция, в ограниченных случаях можно смоделировать, добавив фазу в лучевую модель.

Определение

Луч света — это линия ( прямая или изогнутая ), перпендикулярная волновым фронтам света ; ее касательная коллинеарна волновому вектору . Лучи света в однородных средах прямые. Они изгибаются на границе раздела двух разнородных сред и могут искривляться в среде, в которой изменяется показатель преломления . Геометрическая оптика описывает, как лучи распространяются через оптическую систему. Объекты, подлежащие изображению, рассматриваются как совокупность независимых точечных источников, каждый из которых создает сферические волновые фронты и соответствующие исходящие лучи. Лучи от каждой точки объекта можно математически распространить, чтобы найти соответствующую точку на изображении.

Несколько более строгое определение светового луча следует из принципа Ферма , который гласит, что путь, пройденный лучом света между двумя точками, — это путь, который можно пройти за наименьшее время. [3]

Специальные лучи

Существует множество специальных лучей, которые используются при оптическом моделировании для анализа оптической системы. Они определены и описаны ниже, сгруппированы по типу системы, для моделирования которой они используются.

Взаимодействие с поверхностями

Схема лучей на поверхности, где – угол падения , – угол отражения , – угол преломления.

Оптические системы

Снимок с помощью одного объектива с диафрагменным ограничителем. Входной зрачок представляет собой изображение диафрагменной диафрагмы, образованное находящейся перед ней оптикой, а расположение и размеры зрачка определяются главными лучами и краевыми лучами.

Волоконная оптика

Геометрическая оптика

Геометрическая оптика , или лучевая оптика, — это модель оптики , описывающая распространение света в терминах лучей . Луч в геометрической оптике — это абстракция , полезная для аппроксимации путей, по которым распространяется свет при определенных обстоятельствах.

Упрощающие предположения геометрической оптики включают в себя то, что световые лучи:

  • распространяются по прямолинейным траекториям при движении в однородной среде
  • изгибаться, а при определенных обстоятельствах может разделиться на две части на границе двух разнородных сред
  • следовать изогнутым траекториям в среде, в которой изменяется показатель преломления
  • может поглощаться или отражаться.
Геометрическая оптика не учитывает некоторые оптические эффекты, такие как дифракция и интерференция , которые рассматриваются в физической оптике . Это упрощение полезно на практике; это отличное приближение, когда длина волны мала по сравнению с размером структур, с которыми взаимодействует свет. Эти методы особенно полезны при описании геометрических аспектов изображений , включая оптические аберрации .

трассировка лучей

В физике трассировка лучей — это метод расчета пути волн или частиц через систему с областями различной скорости распространения , характеристиками поглощения и отражающими поверхностями. В этих обстоятельствах волновые фронты могут изгибаться, менять направление или отражаться от поверхностей, что усложняет анализ. Строго говоря, трассировка лучей — это когда решаются аналитические решения траекторий лучей; однако трассировку лучей часто путают с маршированием лучей , которое численно решает проблемы путем многократного продвижения идеализированных узких лучей, называемых лучами , через среду на дискретные величины. Простые проблемы можно проанализировать, распространяя несколько лучей, используя простую математику. Более детальный анализ можно выполнить, используя компьютер для распространения множества лучей.

Применительно к проблемам электромагнитного излучения трассировка лучей часто опирается на приближенные решения уравнений Максвелла , которые действительны до тех пор, пока световые волны распространяются через и вокруг объектов, размеры которых намного превышают длину волны света . Теория лучей не описывает такие явления, как интерференция и дифракция , для которых требуется волновая теория (с учетом фазы волны).

Смотрите также

Рекомендации

  1. Мур, Кен (25 июля 2005 г.). «Что такое луч?». База знаний пользователей ZEMAX . Проверено 30 мая 2008 г.
  2. ^ Грейвенкамп, Джон Э. (2004). Полевое руководство по геометрической оптике . Полевые руководства SPIE. п. 2. ISBN 0819452947.
  3. ^ Артур Шустер , Введение в теорию оптики , Лондон: Эдвард Арнольд, 1904 г., онлайн.
  4. ^ abcd Стюарт, Джеймс Э. (1996). Оптические принципы и технологии для инженеров . КПР. п. 57. ИСБН 978-0-8247-9705-8.
  5. ^ аб Грейвенкамп, Джон Э. (2004). Полевое руководство по геометрической оптике . Полевые руководства SPIE, том. ФГ01 . ШПИОН. ISBN 0-8194-5294-7., п. 25 [1].
  6. ^ аб Ридл, Макс Дж. (2001). Основы оптического проектирования инфракрасных систем . Учебные тексты по оптической технике. Том. 48. ШПАЙ. п. 1. ISBN 978-0-8194-4051-8.
  7. ^ аб Хехт, Юджин (2017). «5.3.2 Входные и выходные ученики». Оптика (5-е изд.). Пирсон. п. 184. ИСБН 978-1-292-09693-3.
  8. ^ Малакара, Дэниел и Закариас (2003). Справочник по оптическому проектированию (2-е изд.). КПР. п. 25. ISBN 978-0-8247-4613-1.
  9. ^ Грейвенкамп (2004), с. 28 [2].
  10. ^ Грейвенкамп (2004), стр. 19–20 [3].
  11. Николсон, Марк (21 июля 2005 г.). «Понимание параксиальной трассировки лучей». База знаний пользователей ZEMAX . Проверено 17 августа 2009 г.
  12. ^ аб Атчисон, Дэвид А.; Смит, Джордж (2000). «А1: Параксиальная оптика». Оптика человеческого глаза . Elsevier Науки о здоровье. п. 237. ИСБН 978-0-7506-3775-6.
  13. ^ Велфорд, WT (1986). «4: Конечная трассировка лучей». Аберрации оптических систем . Серия Адама Хильгера по оптике и оптоэлектронике. ЦРК Пресс. п. 50. ISBN 978-0-85274-564-9.
  14. ^ Бухдал, HA (1993). Введение в гамильтонову оптику . Дувр. п. 26. ISBN 978-0-486-67597-8.
  15. Николсон, Марк (21 июля 2005 г.). «Понимание параксиальной трассировки лучей». База знаний пользователей ZEMAX . п. 2 . Проверено 17 августа 2009 г.