stringtranslate.com

Рекомендательная система

Рекомендательная система , или система рекомендаций (иногда заменяющая слово «система» такими терминами, как «платформа», «движок» или «алгоритм»), представляет собой подкласс системы фильтрации информации , которая предоставляет предложения по элементам, наиболее подходящим для конкретной задачи. конкретного пользователя. [1] [2] [3] Рекомендательные системы особенно полезны, когда человеку необходимо выбрать товар из потенциально огромного количества товаров, которые может предложить услуга. [1] [4]

Обычно предложения относятся к различным процессам принятия решений, например, какой продукт купить, какую музыку слушать или какие онлайн-новости читать. [1] Рекомендательные системы используются в самых разных областях, общепризнанными примерами являются генераторы списков воспроизведения для видео- и музыкальных сервисов, рекомендации продуктов для интернет-магазинов или рекомендации контента для платформ социальных сетей и рекомендации открытого веб-контента. [5] [6] Эти системы могут работать, используя один тип входных данных, например музыку, или несколько входных данных внутри и между платформами, таких как новости, книги и поисковые запросы. Существуют также популярные системы рекомендаций по конкретным темам, таким как рестораны и онлайн-знакомства . Рекомендательные системы также были разработаны для изучения исследовательских статей и экспертов, [7] сотрудников, [8] и финансовых услуг. [9]

Обзор

Рекомендательные системы обычно используют либо совместную фильтрацию , либо фильтрацию на основе контента (также известную как личностный подход), а также другие системы, такие как системы, основанные на знаниях . Подходы к совместной фильтрации строят модель на основе прошлого поведения пользователя (предметы, купленные или выбранные ранее, и/или числовые рейтинги, присвоенные этим элементам), а также аналогичные решения, принятые другими пользователями. Эта модель затем используется для прогнозирования элементов (или оценок элементов), которые могут быть интересны пользователю. [10] Подходы к фильтрации на основе контента используют ряд дискретных, предварительно помеченных характеристик элемента, чтобы рекомендовать дополнительные элементы. с подобными свойствами. [11]

Мы можем продемонстрировать разницу между совместной фильтрацией и фильтрацией на основе контента, сравнив две системы рекомендаций старинной музыки — Last.fm и Pandora Radio .

Каждый тип системы имеет свои сильные и слабые стороны. В приведенном выше примере Last.fm требует большого объема информации о пользователе, чтобы дать точные рекомендации. Это пример проблемы холодного запуска , которая часто встречается в системах совместной фильтрации. [13] [14] [15] [16] [17] [18] Несмотря на то, что для запуска Pandora требуется очень мало информации, ее объем гораздо более ограничен (например, она может давать только рекомендации, аналогичные исходному сиду). ).

Рекомендательные системы являются полезной альтернативой поисковым алгоритмам, поскольку они помогают пользователям находить элементы, которые иначе они бы не нашли. Следует отметить, что рекомендательные системы часто реализуются с использованием поисковых систем, индексирующих нетрадиционные данные.

Рекомендательные системы были предметом нескольких выданных патентов. [19] [20] [21] [22] [23]

История

Элейн Рич создала первую рекомендательную систему в 1979 году под названием Grundy. [24] [25] Она искала способ рекомендовать пользователям книги, которые им могут понравиться. Ее идея заключалась в том, чтобы создать систему, которая задает пользователям конкретные вопросы и классифицирует их по классам предпочтений или «стереотипам» в зависимости от их ответов. В зависимости от стереотипной принадлежности пользователей они будут получать рекомендации по книгам, которые могут им понравиться.

Другая ранняя рекомендательная система, названная «цифровая книжная полка», была описана в техническом отчете 1990 года Юсси Карлгреном из Колумбийского университета [26] и широко реализована и проработана в технических отчетах и ​​публикациях с 1994 года Юсси Карлгреном, затем в SICS , [27] [28] и исследовательские группы под руководством Патти Мэйс из Массачусетского технологического института, [29] Уилла Хилла из Bellcore, [30] и Пола Резника , также из Массачусетского технологического института [31] [4] , чья работа с GroupLens была удостоена награды 2010 года. Премия ACM Software Systems .

Монтанер представил первый обзор рекомендательных систем с точки зрения интеллектуального агента. [32] Адомавичус представил новый, альтернативный обзор рекомендательных систем. [33] Herlocker предоставляет дополнительный обзор методов оценки рекомендательных систем, [34] и Beel et al. обсудили проблемы офлайн-оценок. [35] Бил и др. также предоставили обзоры литературы по доступным системам рекомендации исследовательских работ и существующим проблемам. [36] [37]

Подходы

Совместная фильтрация

Пример совместной фильтрации на основе рейтинговой системы

Одним из подходов к разработке рекомендательных систем, получившим широкое распространение, является совместная фильтрация . [38] Совместная фильтрация основана на предположении, что люди, которые согласились в прошлом, согласятся и в будущем, и что им понравятся те же типы элементов, что и в прошлом. Система генерирует рекомендации, используя только информацию о профилях оценок для разных пользователей или товаров. Находя одноранговых пользователей/элементы с историей оценок, аналогичной текущему пользователю или элементу, они генерируют рекомендации, используя это соседство. Методы совместной фильтрации подразделяются на основанные на памяти и основанные на моделях. Хорошо известным примером подходов, основанных на памяти, является пользовательский алгоритм [39] , тогда как подходов, основанных на моделях, является матричная факторизация (рекомендательные системы) . [40]

Ключевое преимущество подхода совместной фильтрации заключается в том, что он не полагается на контент, поддающийся машинному анализу, и поэтому способен точно рекомендовать сложные элементы, такие как фильмы, не требуя «понимания» самого элемента. Многие алгоритмы использовались для измерения сходства пользователей или сходства товаров в рекомендательных системах. Например, подход k-ближайшего соседа (k-NN) [41] и корреляция Пирсона, впервые реализованная Алленом. [42]

При построении модели на основе поведения пользователя часто различают явную и неявную формы сбора данных .

Примеры явного сбора данных включают следующее:

Примеры неявного сбора данных включают следующее:

Подходы к совместной фильтрации часто страдают от трех проблем: холодный запуск , масштабируемость и разреженность. [44]

Одним из наиболее известных примеров совместной фильтрации является совместная фильтрация по каждому товару (люди, которые покупают x, также покупают и y), алгоритм, популяризированный рекомендательной системой Amazon.com . [46]

Многие социальные сети изначально использовали совместную фильтрацию, чтобы рекомендовать новых друзей, группы и другие социальные связи путем изучения сети связей между пользователем и его друзьями. [1] Совместная фильтрация до сих пор используется как часть гибридных систем.

Контентная фильтрация

Другой распространенный подход при разработке рекомендательных систем — фильтрация на основе контента . Методы контентной фильтрации основаны на описании элемента и профиле предпочтений пользователя. [47] [48] Эти методы лучше всего подходят для ситуаций, когда известны данные об элементе (имя, местоположение, описание и т. д.), но не о пользователе. Рекомендатели, основанные на контенте, рассматривают рекомендации как проблему классификации, специфичную для пользователя, и изучают классификатор симпатий и антипатий пользователя на основе характеристик элемента.

В этой системе для описания элементов используются ключевые слова, а профиль пользователя создается для указания типа элемента, который нравится этому пользователю. Другими словами, эти алгоритмы пытаются рекомендовать элементы, похожие на те, которые пользователю нравились в прошлом или просматриваются в настоящем. Для создания этого зачастую временного профиля не используется механизм входа пользователя. В частности, различные элементы-кандидаты сравниваются с элементами, ранее оцененными пользователем, и рекомендуются наиболее подходящие элементы. Этот подход уходит корнями в исследования по поиску и фильтрации информации .

Для создания профиля пользователя система в основном ориентируется на два типа информации:

  1. Модель предпочтений пользователя.
  2. История взаимодействия пользователя с рекомендательной системой.

По сути, эти методы используют профиль элемента (т. е. набор дискретных атрибутов и функций), характеризующий элемент в системе. Чтобы абстрагировать характеристики элементов в системе, применяется алгоритм представления элементов. Широко используемым алгоритмом является представление tf–idf (также называемое представлением в векторном пространстве). [49] Система создает содержательный профиль пользователей на основе взвешенного вектора характеристик элемента. Веса обозначают важность каждой функции для пользователя и могут быть рассчитаны на основе векторов контента с индивидуальной оценкой с использованием различных методов. Простые подходы используют средние значения вектора рейтингового элемента, в то время как другие сложные методы используют методы машинного обучения, такие как байесовские классификаторы , кластерный анализ , деревья решений и искусственные нейронные сети , чтобы оценить вероятность того, что элемент понравится пользователю. [50]

Ключевая проблема с фильтрацией на основе контента заключается в том, может ли система узнавать пользовательские предпочтения на основе действий пользователей в отношении одного источника контента и использовать их для других типов контента. Когда система ограничивается рекомендацией контента того же типа, который уже использует пользователь, ценность системы рекомендаций значительно меньше, чем когда могут быть рекомендованы другие типы контента из других служб. Например, полезно рекомендовать новостные статьи на основе просмотра новостей. Тем не менее, было бы гораздо полезнее, если бы музыку, видео, продукты, обсуждения и т. д. из разных сервисов можно было рекомендовать на основе просмотра новостей. Чтобы преодолеть эту проблему, большинство рекомендательных систем на основе контента теперь используют ту или иную форму гибридной системы.

Системы рекомендаций на основе контента также могут включать системы рекомендаций на основе мнений. В некоторых случаях пользователям разрешено оставлять текстовые отзывы или отзывы о товарах. Эти генерируемые пользователем тексты являются неявными данными для рекомендательной системы, поскольку они потенциально являются богатыми ресурсами как функций/аспектов элемента, так и оценок/отношений пользователей к этому элементу. Функции, извлеченные из отзывов, созданных пользователями, представляют собой улучшенные метаданные элементов, поскольку, поскольку они также отражают такие аспекты элемента, как метаданные , извлеченные функции широко интересуют пользователей. Мнения, извлеченные из обзоров, можно рассматривать как оценки пользователей по соответствующим функциям. Популярные подходы к системе рекомендаций на основе мнений используют различные методы, включая интеллектуальный анализ текста , поиск информации , анализ настроений (см. Также Мультимодальный анализ настроений ) и глубокое обучение. [51]

Гибридные рекомендации

Большинство рекомендательных систем сейчас используют гибридный подход, сочетающий в себе совместную фильтрацию , фильтрацию на основе контента и другие подходы. Нет причин, по которым нельзя было бы гибридизировать несколько разных методов одного типа. Гибридные подходы могут быть реализованы несколькими способами: путем отдельного составления прогнозов на основе контента и на основе сотрудничества, а затем их комбинирования; путем добавления возможностей, основанных на контенте, к подходу, основанному на сотрудничестве (и наоборот); или путем объединения подходов в одну модель ( полный обзор рекомендательных систем см. в [33] ). Несколько исследований, которые эмпирически сравнивали эффективность гибридных методов с чистыми методами сотрудничества и контент-ориентированными методами, показали, что гибридные методы могут давать более точные рекомендации, чем чистые подходы. Эти методы также можно использовать для преодоления некоторых распространенных проблем в рекомендательных системах, таких как холодный запуск и проблема разреженности, а также узкое место в разработке знаний в подходах , основанных на знаниях . [52]

Netflix — хороший пример использования гибридных рекомендательных систем. [53] Веб-сайт дает рекомендации, сравнивая привычки просмотра и поиска похожих пользователей (т. е. совместная фильтрация), а также предлагая фильмы, которые имеют общие характеристики с фильмами, получившими высокую оценку пользователя (фильтрация на основе контента).

Некоторые методы гибридизации включают:

Технологии

Рекомендательные системы на основе сеансов

Эти рекомендательные системы используют взаимодействие пользователя в течение сеанса [56] для генерации рекомендаций. Системы рекомендаций на основе сеансов используются на YouTube [57] и Amazon. [58] Они особенно полезны, когда история пользователя (например, прошлые клики, покупки) недоступна или неактуальна для текущего сеанса пользователя. Области, где рекомендации на основе сеансов особенно актуальны, включают видео, электронную коммерцию, путешествия, музыку и многое другое. Большинство экземпляров рекомендательных систем на основе сеансов полагаются на последовательность недавних взаимодействий в рамках сеанса, не требуя каких-либо дополнительных сведений (исторических, демографических) о пользователе. Методы рекомендаций на основе сеансов в основном основаны на генеративных последовательных моделях, таких как рекуррентные нейронные сети, [56] [59] Трансформаторы, [60] и других подходах, основанных на глубоком обучении [61] [62]

Обучение с подкреплением для рекомендательных систем

Проблему рекомендаций можно рассматривать как частный случай проблемы обучения с подкреплением, в которой пользователь представляет собой среду, на которую действует агент, система рекомендаций, чтобы получить вознаграждение, например, щелчок или взаимодействие пользователя. [57] [63] [64] Одним из аспектов обучения с подкреплением, который особенно полезен в области рекомендательных систем, является тот факт, что модели или политики могут быть изучены путем предоставления вознаграждения рекомендательному агенту. В отличие от традиционных методов обучения, которые основаны на менее гибких подходах к обучению с учителем, методы рекомендаций обучения с подкреплением позволяют потенциально обучать модели, которые можно оптимизировать непосредственно на основе показателей вовлеченности и интереса пользователей. [65]

Многокритериальные рекомендательные системы

Многокритериальные рекомендательные системы (MCRS) можно определить как рекомендательные системы, которые включают информацию о предпочтениях по множеству критериев. Вместо разработки методов рекомендаций, основанных на одном значении критерия, общем предпочтении пользователя u для элемента i, эти системы пытаются спрогнозировать рейтинг для неисследованных элементов u, используя информацию о предпочтениях по множеству критериев, которые влияют на это общее значение предпочтения. Некоторые исследователи подходят к MCRS как к проблеме принятия многокритериальных решений (MCDM) и применяют методы и приемы MCDM для реализации систем MCRS. [66] Подробное введение см. в этой главе [67] .

Рекомендательные системы с учетом рисков

Большинство существующих подходов к рекомендательным системам сосредоточены на рекомендации пользователям наиболее релевантного контента с использованием контекстной информации, но не учитывают риск беспокоить пользователя нежелательными уведомлениями. Важно учитывать риск расстроить пользователя, предлагая рекомендации в определенных обстоятельствах, например, во время профессиональной встречи, рано утром или поздно вечером. Таким образом, эффективность рекомендательной системы частично зависит от того, в какой степени она включила риск в процесс рекомендаций. Одним из вариантов решения этой проблемы является DRARS , система, которая моделирует контекстно-зависимые рекомендации как бандитскую проблему . Эта система сочетает в себе метод, основанный на контенте, и алгоритм контекстного бандита. [68]

Мобильные рекомендательные системы

Мобильные рекомендательные системы используют смартфоны с доступом в Интернет для предоставления персонализированных, контекстно-зависимых рекомендаций. Это особенно сложная область исследований, поскольку мобильные данные более сложны, чем данные, с которыми часто приходится иметь дело рекомендательным системам. Он неоднороден, зашумлен, требует пространственной и временной автокорреляции и имеет проблемы с проверкой и общностью. [69]

Есть три фактора, которые могут повлиять на мобильные рекомендательные системы и точность результатов прогнозирования: контекст, метод рекомендаций и конфиденциальность. [70] Кроме того, мобильные рекомендательные системы страдают от проблемы трансплантации: рекомендации могут применяться не во всех регионах (например, было бы неразумно рекомендовать рецепт в регионе, где все ингредиенты могут быть недоступны).

Одним из примеров мобильных рекомендательных систем являются подходы, применяемые такими компаниями, как Uber и Lyft, для создания маршрутов движения для водителей такси в городе. [69] Эта система использует данные GPS о маршрутах, которые таксисты используют во время работы, включая местоположение (широту и долготу), отметки времени и рабочий статус (с пассажирами или без них). Он использует эти данные, чтобы рекомендовать список пунктов выдачи на маршруте с целью оптимизации времени занятости и прибыли.

Премия Netflix

Одним из событий, которое активизировало исследования в области рекомендательных систем, стала премия Netflix . С 2006 по 2009 год Netflix спонсировал конкурс, предлагая главный приз в размере 1 000 000 долларов команде, которая сможет взять предлагаемый набор данных, содержащий более 100 миллионов рейтингов фильмов, и выдать рекомендации, которые будут на 10% более точными, чем те, которые предлагает существующая рекомендательная система компании. Это соревнование стимулировало поиск новых и более точных алгоритмов. 21 сентября 2009 года главный приз в размере 1 000 000 долларов США был вручен команде BellKor Pragmatic Chaos по правилам тай-брейка. [71]

Самый точный алгоритм 2007 года использовал ансамблевый метод из 107 различных алгоритмических подходов, объединенных в один прогноз. Как заявили победители, Белл и др.: [72]

Точность прогнозирования существенно повышается при объединении нескольких предикторов. Наш опыт показывает, что большинство усилий следует сосредоточить на разработке существенно разных подходов, а не на совершенствовании одной методики. Следовательно, наше решение представляет собой ансамбль многих методов.

Благодаря проекту Netflix Интернет получил множество преимуществ. Некоторые команды взяли свои технологии и применили их на других рынках. Некоторые члены команды, занявшей второе место, основали Gravity R&D , систему рекомендаций, активную в сообществе RecSys. [71] [73] Компания 4-Tell, Inc. создала решение на основе проекта Netflix для веб-сайтов электронной коммерции.

Ряд проблем с конфиденциальностью возник вокруг набора данных, предложенного Netflix для конкурса Netflix Prize. Хотя наборы данных были анонимизированы в целях сохранения конфиденциальности клиентов, в 2007 году два исследователя из Техасского университета смогли идентифицировать отдельных пользователей, сопоставив наборы данных с рейтингами фильмов в базе данных фильмов в Интернете. [74] В результате в декабре 2009 года анонимный пользователь Netflix подал в суд на Netflix в деле Доу против Netflix, утверждая, что Netflix нарушил законы США о справедливой торговле и Закон о защите конфиденциальности видео, выпустив наборы данных. [75] Это, а также опасения Федеральной торговой комиссии привели к отмене второго конкурса Netflix Prize в 2010 году. [76]

Оценка

Показатели эффективности

Оценка важна для оценки эффективности рекомендательных алгоритмов. Для измерения эффективности рекомендательных систем и сравнения различных подходов доступны три типа оценок : исследования пользователей, онлайн-оценки (A/B-тесты) и оффлайн-оценки. [35]

Обычно используемыми показателями являются среднеквадратическая ошибка и среднеквадратическая ошибка , последняя использовалась в премии Netflix. Показатели поиска информации, такие как точность и полнота или DCG, полезны для оценки качества метода рекомендаций. Разнообразие, новизна и охват также считаются важными аспектами оценки. [77] Однако многие классические меры оценки подвергаются резкой критике. [78]

Оценка эффективности алгоритма рекомендаций на фиксированном наборе тестовых данных всегда будет чрезвычайно сложной задачей, поскольку невозможно точно предсказать реакцию реальных пользователей на рекомендации. Следовательно, любая метрика, вычисляющая эффективность алгоритма на основе офлайн-данных, будет неточной.

Исследования пользователей имеют довольно небольшой масштаб. Нескольким десяткам или сотням пользователей предоставляются рекомендации, созданные с помощью разных подходов, а затем пользователи решают, какие рекомендации являются лучшими.

В A/B-тестах рекомендации обычно показываются тысячам пользователей реального продукта, и рекомендательная система случайным образом выбирает как минимум два разных подхода к выработке рекомендаций. Эффективность измеряется с помощью неявных показателей эффективности, таких как коэффициент конверсии или рейтинг кликов .

Офлайн-оценки основаны на исторических данных, например наборе данных, который содержит информацию о том, как пользователи ранее оценивали фильмы. [79]

Затем эффективность рекомендательных подходов измеряется на основе того, насколько хорошо рекомендательный подход может предсказать рейтинги пользователей в наборе данных. Хотя рейтинг является явным выражением того, понравился ли пользователю фильм, такая информация доступна не во всех доменах. Например, в системах рекомендаций по цитированию пользователи обычно не оценивают цитирование или рекомендуемую статью. В таких случаях в офлайн-оценках могут использоваться неявные меры эффективности. Например, можно предположить, что рекомендательная система эффективна, способная рекомендовать как можно больше статей, содержащихся в списке литературы исследовательской статьи. Однако многие исследователи считают такого рода офлайн-оценки критически важными. [80] [81] [82] [35] Например, было показано, что результаты офлайн-оценок имеют низкую корреляцию с результатами исследований пользователей или A/B-тестов. [82] [83] Было показано, что набор данных, популярный для автономной оценки, содержит повторяющиеся данные и, таким образом, приводит к неверным выводам при оценке алгоритмов. [84] Часто результаты так называемых офлайн-оценок не коррелируют с фактически оцененной удовлетворенностью пользователей. [85] Вероятно, это связано с тем, что офлайн-обучение сильно смещено в сторону легко достижимых элементов, а на данные офлайн-тестирования сильно влияют результаты модуля онлайн-рекомендаций. [80] [86] Исследователи пришли к выводу, что к результатам офлайн-оценок следует относиться критически. [87]

За пределами точности

Обычно исследования рекомендательных систем направлены на поиск наиболее точных алгоритмов рекомендаций. Однако есть ряд факторов, которые также важны.

Воспроизводимость

Рекомендательные системы, как известно, трудно оценить в автономном режиме, и некоторые исследователи утверждают, что это привело к кризису воспроизводимости публикаций рекомендательных систем. Тема воспроизводимости, по-видимому, является постоянной проблемой в некоторых местах публикации машинного обучения, но не имеет значительного влияния за пределами мира научных публикаций. Что касается рекомендательных систем, в статье 2019 года было рассмотрено небольшое количество тщательно отобранных публикаций, применяющих глубокое обучение или нейронные методы для решения проблемы рекомендаций Top-k, опубликованных на ведущих конференциях (SIGIR, KDD, WWW, RecSys , IJCAI), показано, что что в среднем менее 40% статей могут быть воспроизведены авторами опроса, а на некоторых конференциях - всего 14%. В статьях рассматривается ряд потенциальных проблем современной исследовательской науки и предлагаются усовершенствованные научные практики в этой области. [100] [101] [102] Более поздние работы по сравнительному тестированию набора одних и тех же методов привели к качественно совершенно разным результатам [103] , в результате чего нейронные методы оказались одними из наиболее эффективных методов. Глубокое обучение и нейронные методы для рекомендательных систем использовались в победных решениях в нескольких недавних задачах рекомендательных систем, WSDM, [104] RecSys Challenge. [105] Более того, методы нейронного и глубокого обучения широко используются в промышленности, где они тщательно тестируются. [106] [57] [58] Тема воспроизводимости не нова в рекомендательных системах. К 2011 году Экстранд, Констан и др. подвергся критике за то, что «в настоящее время трудно воспроизвести и расширить результаты исследований рекомендательных систем» и что оценки «не проводятся последовательно». [107] Констан и Адомавичус приходят к выводу, что «исследовательское сообщество рекомендательных систем сталкивается с кризисом, когда значительное количество статей представляют результаты, которые мало способствуют коллективному знанию [...] часто потому, что исследованиям не хватает [...] оценки, чтобы быть должным образом оценены и, следовательно, внести значимый вклад». [108] Как следствие, многие исследования рекомендательных систем можно считать невоспроизводимыми. [109] Таким образом, операторы рекомендательных систем находят мало указаний в текущих исследованиях для ответа на вопрос, какие рекомендательные подходы использовать в рекомендательных системах. Саид и Беллогин провели исследование статей, опубликованных в этой области, а также сравнили некоторые из наиболее популярных рекомендательных систем и обнаружили большие несоответствия в результатах, даже когда использовались одни и те же алгоритмы и наборы данных. [110]Некоторые исследователи продемонстрировали, что незначительные изменения в алгоритмах или сценариях рекомендаций приводят к сильным изменениям в эффективности рекомендательной системы. Они приходят к выводу, что для улучшения текущей ситуации необходимы семь действий: [109] «(1) изучить другие области исследований и извлечь из них уроки, (2) найти общее понимание воспроизводимости, (3) определить и понять детерминанты, влияющие на воспроизводимость. , (4) проводить более комплексные эксперименты, (5) модернизировать практику публикаций, (6) способствовать развитию и использованию рекомендательных рамок и (7) устанавливать руководящие принципы передовой практики для исследований рекомендательных систем».

Приложения искусственного интеллекта в рекомендации

Приложения искусственного интеллекта (ИИ) в рекомендательных системах — это передовые методологии, которые используют технологии ИИ для повышения производительности механизмов рекомендаций. Рекомендатель на основе искусственного интеллекта может анализировать сложные наборы данных, изучая поведение, предпочтения и взаимодействия пользователей, чтобы генерировать высокоточный и персонализированный контент или предложения продуктов. [111] Интеграция ИИ в рекомендательные системы ознаменовала собой значительный шаг вперед по сравнению с традиционными рекомендательными методами. Традиционные методы часто основывались на негибких алгоритмах, которые могли предлагать элементы на основе общих тенденций пользователей или очевидного сходства в контенте. Для сравнения, системы на базе искусственного интеллекта способны обнаруживать закономерности и тонкие различия, которые могут быть упущены из виду традиционными методами. [112] Эти системы могут адаптироваться к конкретным индивидуальным предпочтениям, тем самым предлагая рекомендации, которые в большей степени соответствуют индивидуальным потребностям пользователя. Этот подход знаменует собой переход к более персонализированным, ориентированным на пользователя предложениям.

В рекомендательных системах широко используются методы искусственного интеллекта, такие как машинное обучение , глубокое обучение и обработка естественного языка . [113] Эти передовые методы расширяют возможности системы по прогнозированию предпочтений пользователей и более точной доставке персонализированного контента. Каждая техника вносит свой уникальный вклад. В следующих разделах будут представлены конкретные модели ИИ, используемые в рекомендательной системе, и проиллюстрированы их теории и функциональные возможности. [ нужна цитата ]

Коллаборативные фильтры на основе KNN

Совместная фильтрация (CF) — один из наиболее часто используемых алгоритмов рекомендательных систем. Он генерирует персонализированные предложения для пользователей на основе явных или неявных моделей поведения для формирования прогнозов. [114] В частности, для вынесения суждений он опирается на внешние отзывы, такие как звездные рейтинги, история покупок и т. д. CF делает прогнозы о предпочтениях пользователей на основе измерений сходства. По сути, основная теория такова: «если пользователь A похож на пользователя B, и если A нравится элемент C, то вполне вероятно, что B также нравится элемент C».

Существует множество моделей совместной фильтрации. Для совместной фильтрации на основе искусственного интеллекта распространенная модель называется K-ближайшими соседями . Идеи заключаются в следующем:

  1. Представление данных : создайте n-мерное пространство, где каждая ось представляет характеристику пользователя (рейтинги, покупки и т. д.). Представьте пользователя как точку в этом пространстве.
  2. Статистическое расстояние : «Расстояние» измеряет, насколько далеко друг от друга находятся пользователи в этом пространстве. См. статистическое расстояние для получения подробной информации о вычислениях.
  3. Идентификация соседей : на основе вычисленных расстояний найдите k ближайших соседей пользователя, которому мы хотим дать рекомендации.
  4. Формирование прогнозирующих рекомендаций : система проанализирует аналогичные предпочтения k соседей. Система будет давать рекомендации на основе этого сходства.

Нейронные сети

Искусственная нейронная сеть (ИНС) — это структура модели глубокого обучения, цель которой имитировать человеческий мозг. Они состоят из ряда нейронов, каждый из которых отвечает за получение и обработку информации, передаваемой от других взаимосвязанных нейронов. [115] Подобно человеческому мозгу, эти нейроны будут менять состояние активации на основе входящих сигналов (входных обучающих сигналов и выходных данных с обратным распространением ошибки), что позволяет системе корректировать веса активации на этапе обучения сети. ИНС обычно разрабатывается как модель черного ящика . В отличие от обычного машинного обучения, в котором лежащие в основе теоретические компоненты формальны и негибки, совместные эффекты нейронов не совсем ясны, но современные эксперименты показали прогностическую силу ИНС.

ИНС широко используется в рекомендательных системах благодаря своей способности использовать различные данные. Помимо данных обратной связи, ИНС может включать в себя данные без обратной связи, которые слишком сложны для изучения при совместной фильтрации, а уникальная структура позволяет ИНС идентифицировать дополнительный сигнал из данных без обратной связи, чтобы улучшить взаимодействие с пользователем. [113] Ниже приведены некоторые примеры:

Обработка естественного языка

Обработка естественного языка — это серия алгоритмов искусственного интеллекта, которые делают естественный человеческий язык доступным и анализируемым для машины. [116] Это довольно современная техника, вдохновленная растущим объемом текстовой информации. Для применения в рекомендательной системе частым случаем является отзыв клиента Amazon. Amazon будет анализировать отзывы каждого клиента и сообщать соответствующие данные другим клиентам для справки. В последние годы были разработаны различные модели анализа текста, включая латентно-семантический анализ (LSA), разложение по сингулярным значениям (SVD), скрытое распределение Дирихле (LDA) и т. д. Их использование последовательно направлено на предоставление клиентам более точных и адаптированных результатов. рекомендации.

Смотрите также

Рекомендации

  1. ^ abcd Риччи, Франческо; Рокач, Лиор; Шапира, Брача (2022). «Рекомендательные системы: методы, приложения и проблемы». В Риччи, Франческо; Рокач, Лиор; Шапира, Брача (ред.). Справочник по рекомендательным системам (3-е изд.). Нью-Йорк: Спрингер. стр. 1–35. дои : 10.1007/978-1-0716-2197-4_1. ISBN 978-1-0716-2196-7.
  2. Лев Гроссман (27 мая 2010 г.). «Как компьютеры узнают, чего мы хотим, еще до того, как мы это сделаем». ВРЕМЯ . Архивировано из оригинала 30 мая 2010 года . Проверено 1 июня 2015 г.
  3. ^ Рой, Дипджьоти; Дутта, Мала (2022). «Систематический обзор и исследовательский взгляд на рекомендательные системы». Журнал больших данных . 9 (59). дои : 10.1186/s40537-022-00592-5 .
  4. ^ аб Резник, Пол и Хэл Р. Вариан. «Рекомендательные системы». Связь ACM 40, нет. 3 (1997): 56–58.
  5. ^ Гупта, Панкадж; Гоэль, Ашиш; Лин, Джимми; Шарма, Аниш; Ван, Донг; Заде, Реза (2013). «WTF: сервис «За кем следить» в Твиттере» . Материалы 22-й Международной конференции по Всемирной паутине . Ассоциация вычислительной техники. стр. 505–514. дои : 10.1145/2488388.2488433. ISBN 9781450320351.
  6. ^ Баран, Ремигиуш; Дзех, Анджей; Зея, Анджей (1 июня 2018 г.). «Мощная платформа для обнаружения мультимедийного контента, основанная на визуальном анализе контента и интеллектуальном обогащении данных». Мультимедийные инструменты и приложения . 77 (11): 14077–14091. дои : 10.1007/s11042-017-5014-1 . ISSN  1573-7721. S2CID  36511631.
  7. ^ Х. Чен, А. Г. Орорбия II, К. Л. Джайлз ExpertSeer: эксперт-рекомендатель для цифровых библиотек на основе ключевых фраз, в препринте arXiv, 2015 г.
  8. ^ Чен, Хун-Сюань; Гоу, Лян; Чжан, Сяолун; Джайлз, Клайд Ли (2011). «CollabSeer: поисковая система для поиска возможностей совместной работы» (PDF) . Материалы 11-й ежегодной международной совместной конференции ACM/IEEE по цифровым библиотекам . Ассоциация вычислительной техники. стр. 231–240. дои : 10.1145/1998076.1998121. ISBN 9781450307444.
  9. ^ Фельферниг, Александр; Исак, Клаус; Сабо, Кальман; Захар, Питер (2007). «Среда поддержки продаж финансовых услуг VITA» (PDF) . В Уильяме Читаме (ред.). Материалы 19-й Национальной конференции по инновационным применениям искусственного интеллекта, том. 2 . стр. 1692–1699. ISBN 9781577353232. Копия АКМ.
  10. ^ Мелвилл, Прем; Синдхвани, Викас (2010). «Рекомендательные системы» (PDF) . У Клода Саммута; Джеффри И. Уэбб (ред.). Энциклопедия машинного обучения . Спрингер. стр. 829–838. дои : 10.1007/978-0-387-30164-8_705. ISBN 978-0-387-30164-8.
  11. ^ Р. Дж. Муни и Л. Рой (1999). Рекомендация книг на основе содержания с использованием обучения для категоризации текста . В Мастерской Реком. Сис.: Алго. и оценка.
  12. Хаупт, Джон (1 июня 2009 г.). «Last.fm: Народное онлайн-радио». Ежеквартальный журнал музыкальных справочных служб . 12 (1–2): 23–24. дои : 10.1080/10588160902816702. ISSN  1058-8167. S2CID  161141937.
  13. ^ Аб Чен, Хун-Сюань; Чен, Пу (9 января 2019 г.). «Дифференцирование весов регуляризации - простой механизм облегчения холодного запуска в рекомендательных системах». Транзакции ACM по извлечению знаний из данных . 13 : 1–22. дои : 10.1145/3285954. S2CID  59337456.
  14. ^ Аб Рубенс, Нил; Элахи, Мехди; Сугияма, Масаси; Каплан, Дейн (2016). «Активное обучение в рекомендательных системах». В Риччи, Франческо; Рокач, Лиор; Шапира, Брача (ред.). Справочник по рекомендательным системам (2-е изд.). Спрингер США. стр. 809–846. дои : 10.1007/978-1-4899-7637-6_24. ISBN 978-1-4899-7637-6.
  15. ^ Бобадилья, Дж.; Ортега, Ф.; Эрнандо, А.; Алькала, Дж. (2011). «Улучшение результатов и производительности рекомендательной системы совместной фильтрации с использованием генетических алгоритмов». Системы, основанные на знаниях . 24 (8): 1310–1316. doi :10.1016/j.knosys.2011.06.005.
  16. ^ Аб Элахи, Мехди; Риччи, Франческо; Рубенс, Нил (2016). «Обзор активного обучения в рекомендательных системах совместной фильтрации». Обзор компьютерных наук . 20 :29–50. doi :10.1016/j.cosrev.2016.05.002.
  17. ^ Эндрю И. Шейн; Александрин Попескуль; Лайл Х. Ангар ; Дэвид М. Пеннок (2002). Методы и метрики для рекомендаций по холодному запуску. Материалы 25-й ежегодной международной конференции ACM SIGIR по исследованиям и разработкам в области информационного поиска (SIGIR 2002). : АКМ . стр. 253–260. ISBN  1-58113-561-0. Проверено 2 февраля 2008 г.
  18. ^ Аб Би, Сюань; Цюй, Энни; Ван, Цзюньхуэй; Шен, Сяотун (2017). «Система рекомендаций для конкретной группы». Журнал Американской статистической ассоциации . 112 (519): 1344–1353. дои : 10.1080/01621459.2016.1219261. S2CID  125187672.
  19. ^ Стек, Чарльз. «Система и метод предоставления рекомендаций по товарам и услугам на основе записанной истории покупок». Патент США 7 222 085, выданный 22 мая 2007 г.
  20. ^ Герц, Фредерик С.М. «Индивидуальные электронные газеты и реклама». Патент США 7 483 871, выданный 27 января 2009 г.
  21. ^ Герц, Фредерик, Лайл Унгар, Цзянь Чжан и Дэвид Вачоб. «Система и способ предоставления доступа к данным с использованием профилей клиентов». Патент США № 8056100, выданный 8 ноября 2011 г.
  22. ^ Харбик, Эндрю В., Райан Дж. Снодграсс и Джоэл Р. Шпигель. «Обнаружение похожих цифровых произведений и авторов работ на основе плейлистов». Патент США № 8 468 046, выданный 18 июня 2013 г.
  23. ^ Линден, Грегори Д., Брент Рассел Смит и Нида К. Зада. «Автоматическое обнаружение и выявление поведенческих связей между просматриваемыми элементами». Патент США № 9070156, выданный 30 июня 2015 г.
  24. ^ БИЛ, Джоран и др. Бумажные рекомендательные системы: обзор литературы. Международный журнал цифровых библиотек, 2016, 17. Jg., Nr. 4, С. 305–338.
  25. ^ РИЧ, Элейн. Моделирование пользователей через стереотипы. Когнитивные науки, 1979, 3. Jg., Nr. 4, С. 329–354.
  26. ^ Карлгрен, Юсси. 1990. «Алгебра для рекомендаций». Рабочий документ Syslab 179 (1990).
  27. ^ Карлгрен, Юсси. «Кластеризация групп новостей на основе поведения пользователей — алгебра рекомендаций. Архивировано 27 февраля 2021 года в Wayback Machine ». Отчет об исследованиях SICS (1994 г.).
  28. ^ Карлгрен, Юсси (октябрь 2017 г.). «Цифровая книжная полка: оригинальная работа над рекомендательными системами» . Проверено 27 октября 2017 г.
  29. ^ Шардананд, Упендра и Патти Мэйс. «Фильтрация социальной информации: алгоритмы автоматизации «сарафанного радио».» В материалах конференции SIGCHI «Человеческий фактор в вычислительных системах», стр. 210–217. ACM Press/Addison-Wesley Publishing Co., 1995.
  30. ^ Хилл, Уилл, Ларри Стед, Марк Розенштейн и Джордж Фернас. «Рекомендации и оценка вариантов в виртуальном сообществе использования. Архивировано 21 декабря 2018 г. на Wayback Machine ». В материалах конференции SIGCHI «Человеческий фактор в вычислительных системах», стр. 194–201. ACM Press/Addison-Wesley Publishing Co., 1995.
  31. ^ Резник, Пол, Неофитос Якову, Митеш Сухак, Питер Бергстрем и Джон Ридл. «GroupLens: открытая архитектура для совместной фильтрации сетевых новостей». В материалах конференции ACM 1994 г. по совместной работе, поддерживаемой компьютерами, стр. 175–186. АКМ, 1994.
  32. ^ Монтанер, М.; Лопес, Б.; де ла Роса, JL (июнь 2003 г.). «Таксономия рекомендательных агентов в Интернете». Обзор искусственного интеллекта . 19 (4): 285–330. дои : 10.1023/А: 1022850703159. S2CID  16544257..
  33. ^ аб Адомавичус, Г.; Тужилин А. (июнь 2005 г.). «На пути к следующему поколению рекомендательных систем: обзор современного состояния и возможных расширений». Транзакции IEEE по знаниям и инженерии данных . 17 (6): 734–749. CiteSeerX 10.1.1.107.2790 . дои :10.1109/TKDE.2005.99. S2CID  206742345. .
  34. ^ Херлокер, Дж.Л.; Констан, Дж.А.; Тервин, Л.Г.; Ридл, Дж.Т. (январь 2004 г.). «Оценка рекомендательных систем совместной фильтрации». АКМ Транс. Инф. Сист . 22 (1): 5–53. CiteSeerX 10.1.1.78.8384 . дои : 10.1145/963770.963772. S2CID  207731647. .
  35. ^ abc Бил, Дж.; Генцмер, М.; Гипп, Б. (октябрь 2013 г.). «Сравнительный анализ офлайн- и онлайн-оценок и обсуждение системы оценки рекомендаций исследовательских работ» (PDF) . Материалы международного семинара по воспроизводимости и репликации в оценке рекомендательных систем . стр. 7–14. дои : 10.1145/2532508.2532511. ISBN 978-1-4503-2465-6. S2CID  8202591. Архивировано из оригинала (PDF) 17 апреля 2016 года . Проверено 22 октября 2013 г.
  36. ^ Бил, Дж.; Лангер, С.; Генцмер, М.; Гипп, Б.; Брайтингер, К. (октябрь 2013 г.). «Оценка системы рекомендаций научных работ: количественный обзор литературы» (PDF) . Материалы международного семинара по воспроизводимости и репликации в оценке рекомендательных систем. стр. 15–22. дои : 10.1145/2532508.2532512. ISBN 978-1-4503-2465-6. S2CID  4411601.
  37. ^ Бил, Дж.; Гипп, Б.; Лангер, С.; Брайтингер, К. (26 июля 2015 г.). «Системы рекомендаций для научных работ: обзор литературы». Международный журнал цифровых библиотек . 17 (4): 305–338. дои : 10.1007/s00799-015-0156-0. S2CID  207035184.
  38. ^ Джон С. Бриз; Дэвид Хекерман и Карл Кэди (1998). Эмпирический анализ предсказательных алгоритмов коллаборативной фильтрации . В материалах четырнадцатой конференции по неопределенности в искусственном интеллекте (UAI'98). arXiv : 1301.7363 .
  39. ^ Бриз, Джон С.; Хеккерман, Дэвид; Кэди, Карл (1998). Эмпирический анализ алгоритмов прогнозирования для совместной фильтрации (PDF) (Отчет). Исследования Майкрософт.
  40. ^ Корен, Иегуда; Волинский, Крис (1 августа 2009 г.). «Методы матричной факторизации для рекомендательных систем». Компьютер . 42 (8): 30–37. CiteSeerX 10.1.1.147.8295 . дои : 10.1109/MC.2009.263. S2CID  58370896. 
  41. ^ Сарвар, Б.; Карипис, Г.; Констан, Дж.; Ридл, Дж. (2000). «Применение уменьшения размерности в рекомендательной системе на примере».,
  42. ^ Аллен, РБ (1990). Пользовательские модели: теория, метод, практика . Международные исследования человеко-машинных технологий.
  43. ^ Парсонс, Дж.; Ральф, П.; Галлахер, К. (июль 2004 г.). Использование времени просмотра для определения предпочтений пользователя в рекомендательных системах . Семинар AAAI по персонализации семантической сети, Сан-Хосе, Калифорния..
  44. ^ Санхак Ли, Джихун Ян и Пак Сунг-Ён, Обнаружение скрытого сходства в совместной фильтрации для преодоления проблемы разреженности, Discovery Science, 2007.
  45. ^ Фелисио, Крисия З.; Пайшао, Клериссон В.Р.; Барселуш, Селия АЗ; Пре, Филипп (9 июля 2017 г.). «Выбор модели многорукого бандита для рекомендаций пользователям при холодном запуске». Материалы 25-й конференции по моделированию, адаптации и персонализации пользователей (PDF) . УМАП '17. Братислава, Словакия: Ассоциация вычислительной техники. стр. 32–40. дои : 10.1145/3079628.3079681. ISBN 978-1-4503-4635-1. S2CID  653908.
  46. ^ Совместные рекомендации с использованием сопоставлений сходства между предметами. Архивировано 16 марта 2015 г. на Wayback Machine.
  47. ^ Аггарвал, Чару К. (2016). Рекомендательные системы: Учебник . Спрингер. ISBN 978-3-319-29657-9.
  48. ^ Петр Брусиловский (2007). Адаптивная сеть . Спрингер. п. 325. ИСБН 978-3-540-72078-2.
  49. ^ Ван, Дунхуэй; Лян, Яньчунь; Сюй, Донг; Фэн, Сяоюэ; Гуан, Ренчу (2018). «Система рекомендаций на основе контента для публикаций по информатике». Системы, основанные на знаниях . 157 : 1–9. дои : 10.1016/j.knosys.2018.05.001 .
  50. Бланда, Стефани (25 мая 2015 г.). «Системы онлайн-рекомендаций - откуда веб-сайт узнает, чего я хочу?». Американское математическое общество . Проверено 31 октября 2016 г.
  51. ^ XY Фэн, Х. Чжан, YJ Ren, PH Shang, Y. Zhu, YC Liang, RC Guan, D. Xu, (2019), «Рекомендательная система на основе глубокого обучения «Pubmender» для выбора места биомедицинской публикации: Исследование развития и проверки», Журнал медицинских интернет-исследований , 21 (5): e12957.
  52. ^ Ринке Хукстра, Узкое место реинжиниринга знаний, Семантическая сеть - совместимость, удобство использования, применимость 1 (2010) 1, IOS Press
  53. ^ Гомес-Урибе, Карлос А.; Хант, Нил (28 декабря 2015 г.). «Рекомендательная система Netflix». Транзакции ACM в информационных системах управления . 6 (4): 1–19. дои : 10.1145/2843948 .
  54. ^ Аб Заманзаде Дарбан, З.; Валипур, Миннесота (15 августа 2022 г.). «GHRS: гибридная система рекомендаций на основе графиков с рекомендацией приложений к фильмам». Экспертные системы с приложениями . 200 : 116850. arXiv : 2111.11293 . дои : 10.1016/j.eswa.2022.116850. S2CID  244477799.
  55. ^ Робин Берк, Гибридные веб-рекомендательные системы. Архивировано 12 сентября 2014 г. в Wayback Machine , стр. 377-408, Адаптивная сеть, Питер Брусиловский, Альфред Кобса, Вольфганг Нейдль (ред.), Конспекты лекций по информатике, Springer- Верлаг, Берлин, Германия, Конспекты лекций по информатике, Vol. 4321, май 2007 г., 978-3-540-72078-2.
  56. ^ аб Хидаси, Балаж; Карацоглу, Александрос; Балтрунас, Линас; Тикк, Домонкос (29 марта 2016 г.). «Рекомендации на основе сеансов с рекуррентными нейронными сетями». arXiv : 1511.06939 [cs.LG].
  57. ^ abc Чен, Минмин; Бойтель, Алекс; Ковингтон, Пол; Джайн, Сагар; Беллетти, Франсуа; Чи, Эд (2018). «Коррекция несоответствия политике Top-K для рекомендательной системы REINFORCE». arXiv : 1812.02353 [cs.LG].
  58. ^ Аб Ифэй, Ма; Нараянасвами, Балакришнан; Хайбин, Лин; Хао, Дин (2020). «Временно-контекстная рекомендация в режиме реального времени». Материалы 26-й Международной конференции ACM SIGKDD по обнаружению знаний и интеллектуальному анализу данных . Ассоциация вычислительной техники. стр. 2291–2299. дои : 10.1145/3394486.3403278 . ISBN 978-1-4503-7998-4. S2CID  221191348.
  59. ^ Хидаси, Балаж; Карацоглу, Александрос (17 октября 2018 г.). «Рекуррентные нейронные сети с топ-k приростом для рекомендаций на основе сеансов». Материалы 27-й Международной конференции ACM по управлению информацией и знаниями . ЦИКМ '18. Турин, Италия: Ассоциация вычислительной техники. стр. 843–852. arXiv : 1706.03847 . дои : 10.1145/3269206.3271761. ISBN 978-1-4503-6014-2. S2CID  1159769.
  60. ^ Канг, Ван-Ченг; Маколи, Джулиан (2018). «Внимательная последовательная рекомендация». arXiv : 1808.09781 [cs.IR].
  61. ^ Ли, Цзин; Рен, Пэнцзе; Чен, Жумин; Рен, Чжаочунь; Лиан, Тао; Ма, июнь (6 ноября 2017 г.). «Рекомендации на основе сеансов нейронного внимания». Материалы конференции ACM по управлению информацией и знаниями 2017 года . ЦИКМ '17. Сингапур, Сингапур: Ассоциация вычислительной техники. стр. 1419–1428. arXiv : 1711.04725 . дои : 10.1145/3132847.3132926. ISBN 978-1-4503-4918-5. S2CID  21066930.
  62. ^ Лю, Цяо; Цзэн, Ифу; Мохоси, Рефуоэ; Чжан, Хайбинь (19 июля 2018 г.). "ПЕЧАТЬ". Материалы 24-й Международной конференции ACM SIGKDD по обнаружению знаний и интеллектуальному анализу данных . КДД '18. Лондон, Великобритания: Ассоциация вычислительной техники. стр. 1831–1839. дои : 10.1145/3219819.3219950. ISBN 978-1-4503-5552-0. S2CID  50775765.
  63. ^ Синь, Синь; Карацоглу, Александрос; Арапакис, Иоаннис; Хосе, Джоемон (2020). «Самоконтролируемое обучение с подкреплением для рекомендательных систем». arXiv : 2006.05779 [cs.LG].
  64. ^ То есть, Евгений; Джайн, Вихан; Нарвекар, Санмит; Агарвал, Ритеш; Ву, Руи; Ченг, Хэн-Цзы; Чандра, Тушар; Бутилье, Крейг (2019). «SlateQ: управляемая декомпозиция для обучения с подкреплением с помощью наборов рекомендаций». Материалы двадцать восьмой международной совместной конференции по искусственному интеллекту (IJCAI-19) : 2592–2599.
  65. ^ Цзоу, Ликсин; Ся, Лонг; Дин, Чжое; Сун, Цзясин; Лю, Вэйдун; Инь, Давэй (2019). «Обучение с подкреплением для оптимизации долгосрочного взаимодействия пользователей с рекомендательными системами». Материалы 25-й Международной конференции ACM SIGKDD по обнаружению знаний и интеллектуальному анализу данных . КДД '19. стр. 2810–2818. arXiv : 1902.05570 . дои : 10.1145/3292500.3330668. ISBN 978-1-4503-6201-6. S2CID  62903207.
  66. ^ Лакиотаки, К.; Мацацинис; Цукиас, А (март 2011 г.). «Многокритериальное моделирование пользователей в рекомендательных системах». Интеллектуальные системы IEEE . 26 (2): 64–76. CiteSeerX 10.1.1.476.6726 . doi : 10.1109/mis.2011.33. S2CID  16752808. 
  67. ^ Гедиминас Адомавичюс; Никос Мануселис; ЯнгОк Квон. «Многокритериальные рекомендательные системы» (PDF) . Архивировано из оригинала (PDF) 30 июня 2014 г.
  68. ^ Бунеффуф, Джалель (2013), DRARS, Динамическая рекомендательная система с учетом рисков (доктор философии), Национальный институт телекоммуникаций
  69. ^ Аб Ён Гэ; Хуэй Сюн; Александр Тужилин; Кели Сяо; Марко Грутезер; Майкл Дж. Паццани (2010). Энергоэффективная мобильная рекомендательная система (PDF) . Материалы 16-й Международной конференции ACM SIGKDD. по обнаружению знаний и интеллектуальному анализу данных. Нью-Йорк, Нью-Йорк : ACM . стр. 899–908 . Проверено 17 ноября 2011 г.
  70. ^ Пименидис, Элиас; Полатидис, Николаос; Муратидис, Хараламбос (3 августа 2018 г.). «Мобильные рекомендательные системы: определение основных концепций». Журнал информатики . 45 (3): 387–397. arXiv : 1805.02276 . дои : 10.1177/0165551518792213. S2CID  19209845.
  71. ↑ Аб Лор, Стив (22 сентября 2009 г.). «Исследовательская сделка на 1 миллион долларов для Netflix и, возможно, модель для других». Нью-Йорк Таймс .
  72. ^ Р. Белл; Ю. Корен; С. Волинский (2007). «Решение BellKor для премии Netflix» (PDF) . Архивировано из оригинала (PDF) 4 марта 2012 года . Проверено 30 апреля 2009 г.
  73. Бодоки, Томас (6 августа 2009 г.). «Матричная факторизация на миллион долларов». Индекс .
  74. Восстание хакеров Netflix. Архивировано 24 января 2012 г. в Wayback Machine.
  75. ^ «Netflix раскрыл секрет вашей Горбатой горы, иск» . ПРОВОДНОЙ . 17 декабря 2009 года . Проверено 1 июня 2015 г.
  76. ^ "Обновление премии Netflix" . Форум премии Netflix. 12 марта 2010 года. Архивировано из оригинала 27 ноября 2011 года . Проверено 14 декабря 2011 г.
  77. ^ Латия, Н., Хейлс, С., Капра, Л., Аматриан, X.: Временное разнообразие в рекомендательных системах [ мертвая ссылка ] . В: Материалы 33-й Международной конференции ACMSIGIR по исследованиям и разработкам в области информационного поиска, SIGIR 2010, стр. 210–217. АКМ, Нью-Йорк
  78. ^ Терпин, Эндрю Х; Херш, Уильям (2001). «Почему пакетные и пользовательские оценки не дают одинаковых результатов». Материалы 24-й ежегодной международной конференции ACM SIGIR по исследованиям и разработкам в области информационного поиска . стр. 225–231.
  79. ^ «Набор данных MovieLens» . 6 сентября 2013 г.
  80. ^ Аб Чен, Хун-Сюань; Чунг, Чу-Ань; Хуан, Синь-Чиен; Цуй, Вэнь (1 сентября 2017 г.). «Распространенные ошибки при обучении и оценке рекомендательных систем». Информационный бюллетень ACM SIGKDD об исследованиях . 19 : 37–45. дои : 10.1145/3137597.3137601. S2CID  10651930.
  81. ^ Яннах, Дитмар; Лерче, Лукас; Гедикли, Фатих; Боннин, Жоффрей (10 июня 2013 г.). «Что рекомендуют рекомендации: анализ точности, популярности и эффектов разнообразия продаж». В Карберри, Сандра; Вайбельзал, Стефан; Микарелли, Алессандро; Семераро, Джованни (ред.). Моделирование пользователей, адаптация и персонализация . Конспекты лекций по информатике. Том. 7899. Шпрингер Берлин Гейдельберг. стр. 25–37. CiteSeerX 10.1.1.465.96 . дои : 10.1007/978-3-642-38844-6_3. ISBN  978-3-642-38843-9.
  82. ^ аб Терпин, Эндрю Х.; Херш, Уильям (1 января 2001 г.). «Почему пакетные и пользовательские оценки не дают одинаковых результатов». Материалы 24-й ежегодной международной конференции ACM SIGIR по исследованиям и разработкам в области информационного поиска . СИГИР '01. Нью-Йорк, штат Нью-Йорк, США: ACM. стр. 225–231. CiteSeerX 10.1.1.165.5800 . дои : 10.1145/383952.383992. ISBN  978-1-58113-331-8. S2CID  18903114.
  83. Лангер, Стефан (14 сентября 2015 г.). «Сравнение оффлайн-оценок, онлайн-оценок и исследований пользователей в контексте рекомендательных систем научных статей». В Капидакисе, Сарантос; Мазурек, Цезари; Верла, Марцин (ред.). Исследования и передовые технологии для электронных библиотек . Конспекты лекций по информатике. Том. 9316. Международное издательство Springer. стр. 153–168. дои : 10.1007/978-3-319-24592-8_12. ISBN 978-3-319-24591-1.
  84. ^ Басаран, Дэниел; Нтуци, Эйрини; Зимек, Артур (2017). Материалы Международной конференции SIAM по интеллектуальному анализу данных 2017 года . стр. 390–398. дои : 10.1137/1.9781611974973.44. ISBN 978-1-61197-497-3.
  85. ^ Бил, Джоран; Генцмер, Марсель; Лангер, Стефан; Нюрнбергер, Андреас; Гипп, Бела (1 января 2013 г.). «Сравнительный анализ офлайн- и онлайн-оценок и обсуждение системы рекомендаций исследовательских работ». Материалы международного семинара по воспроизводимости и репликации в оценке рекомендательных систем . РепСис '13. Нью-Йорк, штат Нью-Йорк, США: ACM. стр. 7–14. CiteSeerX 10.1.1.1031.973 . дои : 10.1145/2532508.2532511. ISBN  978-1-4503-2465-6. S2CID  8202591.
  86. ^ Каньямарес, Росио; Кастельс, Пабло (июль 2018 г.). Должен ли я следовать за толпой? Вероятностный анализ эффективности популярности в рекомендательных системах (PDF) . 41-я ежегодная международная конференция ACM SIGIR по исследованиям и разработкам в области информационного поиска (SIGIR 2018). Анн-Арбор, Мичиган, США: ACM. стр. 415–424. дои : 10.1145/3209978.3210014. Архивировано из оригинала (PDF) 14 апреля 2021 г. Проверено 5 марта 2021 г.
  87. ^ Каньямарес, Росио; Кастельс, Пабло; Моффат, Алистер (март 2020 г.). «Варианты автономной оценки для рекомендательных систем» (PDF) . Поиск информации . 23 (4). Спрингер: 387–410. дои : 10.1007/s10791-020-09371-3. S2CID  213169978.
  88. ^ Зиглер CN, Макни С.М., Констан Дж.А., Лаузен Г. (2005). «Улучшение списков рекомендаций за счет диверсификации тем». Материалы 14-й международной конференции по Всемирной паутине . стр. 22–32.
  89. ^ Аб Кастельс, Пабло; Херли, Нил Дж.; Варгас, Саул (2015). «Новинка и разнообразие рекомендательных систем». В Риччи, Франческо; Рокач, Лиор; Шапира, Брача (ред.). Справочник по рекомендательным системам (2-е изд.). Спрингер США. стр. 881–918. дои : 10.1007/978-1-4899-7637-6_26. ISBN 978-1-4899-7637-6.
  90. ^ Джоран Бил; Стефан Лангер; Марсель Генцмер; Андреас Нюрнбергер (сентябрь 2013 г.). «Постоянство в рекомендательных системах: предоставление одних и тех же рекомендаций одним и тем же пользователям несколько раз» (PDF) . В Тронд-Альберге; Милена Добрева; Христос Папатеодору; Яннис Цаконас; Чарльз Фарруджа (ред.). Материалы 17-й Международной конференции по теории и практике электронных библиотек (TPDL 2013) . Конспекты лекций по информатике (LNCS). Том. 8092. Спрингер. стр. 390–394 . Проверено 1 ноября 2013 г.
  91. ^ Косли, Д.; Лам, СК; Альберт, И.; Констан, Дж.А.; Ридл, Дж (2003). «Видеть — значит верить?: как интерфейсы рекомендательной системы влияют на мнение пользователей» (PDF) . Материалы конференции SIGCHI «Человеческий фактор в вычислительных системах» . стр. 585–592. S2CID  8307833.
  92. ^ Пу, П.; Чен, Л.; Ху, Р. (2012). «Оценка рекомендательных систем с точки зрения пользователя: обзор современного состояния» (PDF) . Пользовательское моделирование и взаимодействие с пользователем : 1–39.
  93. ^ Нарен Рамакришнан; Бенджамин Дж. Келлер; Батул Дж. Мирза; Анант Ю. Грама; Георгий Карипис (2001). «Риски конфиденциальности в рекомендательных системах». IEEE Интернет-вычисления . 5 (6). Пискатауэй, Нью-Джерси: Департамент образовательной деятельности IEEE: 54–62. CiteSeerX 10.1.1.2.2932 . дои : 10.1109/4236.968832. ISBN  978-1-58113-561-9. S2CID  1977107.
  94. ^ Джоран Бил; Стефан Лангер; Андреас Нюрнбергер; Марсель Генцмер (сентябрь 2013 г.). «Влияние демографических данных (возраста и пола) и других характеристик пользователей на оценку рекомендательных систем» (PDF) . В Тронде Ольберге; Милена Добрева; Христос Папатеодору; Яннис Цаконас; Чарльз Фарруджа (ред.). Материалы 17-й Международной конференции по теории и практике электронных библиотек (TPDL 2013) . Спрингер. стр. 400–404 . Проверено 1 ноября 2013 г.
  95. ^ Констан Дж. А., Ридл Дж. (2012). «Рекомендательные системы: от алгоритмов к пользовательскому опыту» (PDF) . Пользовательское моделирование и взаимодействие с пользователем . 22 (1–2): 1–23. дои : 10.1007/s11257-011-9112-x . S2CID  8996665.
  96. ^ Риччи Ф, Рокач Л, Шапира Б, Кантор БП (2011). Справочник по рекомендательным системам . стр. 1–35. Бибкод :2011рш..книга.....Р.
  97. ^ Мёллер, Юдит; Триллинг, Дамиан; Хельбергер, Натали; ван Эс, Брэм (3 июля 2018 г.). «Не вините в этом алгоритм: эмпирическая оценка множественных рекомендательных систем и их влияния на разнообразие контента». Информация, коммуникация и общество . 21 (7): 959–977. дои : 10.1080/1369118X.2018.1444076. hdl : 11245.1/4242e2e0-3beb-40a0-a6cb-d8947a13efb4 . ISSN  1369-118Х. S2CID  149344712.
  98. ^ Монтанер, Микель; Лопес, Беатрис; де ла Роса, Хосеп Луис (2002). «Развитие доверия к рекомендательным агентам». Материалы первой международной совместной конференции «Автономные агенты и мультиагентные системы: часть 1» . стр. 304–305.
  99. Бил, Джоран, Лангер, Стефан, Генцмер, Марсель (сентябрь 2013 г.). «Спонсорские и органические (исследовательские работы) рекомендации и влияние маркировки» (PDF) . В Тронде Ольберге, Милене Добреве, Христосе Папатеодору, Яннисе Цаконасе, Чарльзе Фаррудже (ред.). Материалы 17-й Международной конференции по теории и практике электронных библиотек (TPDL 2013) . стр. 395–399 . Проверено 2 декабря 2013 г.
  100. ^ Феррари Дакрема, Маурицио; Больо, Симона; Кремонези, Паоло; Яннах, Дитмар (8 января 2021 г.). «Тревожный анализ воспроизводимости и прогресса в исследованиях рекомендательных систем». Транзакции ACM в информационных системах . 39 (2): 1–49. arXiv : 1911.07698 . дои : 10.1145/3434185. hdl : 11311/1164333. S2CID  208138060.
  101. ^ Феррари Дакрема, Маурицио; Кремонези, Паоло; Яннах, Дитмар (2019). «Действительно ли мы добиваемся большого прогресса? Тревожный анализ последних подходов к нейронным рекомендациям». Материалы 13-й конференции ACM по рекомендательным системам . РекСис '19. АКМ. стр. 101–109. arXiv : 1907.06902 . дои : 10.1145/3298689.3347058. hdl : 11311/1108996. ISBN 978-1-4503-6243-6. S2CID  196831663 . Проверено 16 октября 2019 г.
  102. ^ Рендл, Штеффен; Кричене, Валид; Чжан, Ли; Андерсон, Джон (22 сентября 2020 г.). «Нейронная совместная фильтрация против матричной факторизации». Четырнадцатая конференция ACM по рекомендательным системам . стр. 240–248. arXiv : 2005.09683 . дои : 10.1145/3383313.3412488 . ISBN 978-1-4503-7583-2.
  103. ^ Сунь, Чжу; Ю, Ди; Фанг, Хуэй; Ян, Цзе; Цюй, Синхуа; Чжан, Цзе; Гэн, Конг (2020). «Проводим ли мы строгую оценку? Рекомендации по сравнительному анализу для воспроизводимой оценки и справедливого сравнения». Четырнадцатая конференция ACM по рекомендательным системам . АКМ. стр. 23–32. дои : 10.1145/3383313.3412489. ISBN 978-1-4503-7583-2. S2CID  221785064.
  104. ^ Шифферер, Бенедикт; Деотт, Крис; Пьюже, Жан-Франсуа; де Соуза Перейра, Габриэль; Титерич, Жилберто; Лю, Дживэй; Хорошо, Ронай. «Использование глубокого обучения для победы в конкурсе Booking.com WSDM WebTour21 по последовательным рекомендациям» (PDF) . WSDM '21: Конференция ACM по веб-поиску и интеллектуальному анализу данных . АКМ. Архивировано из оригинала (PDF) 25 марта 2021 г. Проверено 3 апреля 2021 г.
  105. ^ Волковы, Максимы; Рай, Химаншу; Ченг, Чжаоюэ; Ву, Га; Лу, Ичао; Саннер, Скотт (2018). «Двухэтапная модель автоматического продолжения списка воспроизведения в масштабе». Материалы конкурса ACM Recommender Systems Challenge 2018 . АКМ. стр. 1–6. дои : 10.1145/3267471.3267480. ISBN 978-1-4503-6586-4. S2CID  52942462.
  106. ^ Ив Раймонд, Джастин Базилико Глубокое обучение для рекомендательных систем, Deep Learning Re-Work SF Summit 2018
  107. ^ Экстранд, Майкл Д.; Людвиг, Майкл; Констан, Джозеф А.; Ридл, Джон Т. (1 января 2011 г.). «Переосмысление экосистемы рекомендательных исследований». Материалы пятой конференции ACM по рекомендательным системам . РекСис '11. Нью-Йорк, штат Нью-Йорк, США: ACM. стр. 133–140. дои : 10.1145/2043932.2043958. ISBN 978-1-4503-0683-6. S2CID  2215419.
  108. ^ Констан, Джозеф А.; Адомавичюс, Гедиминас (1 января 2013 г.). «На пути к выявлению и внедрению лучших практик в исследовании алгоритмических рекомендательных систем». Материалы международного семинара по воспроизводимости и репликации в оценке рекомендательных систем . РепСис '13. Нью-Йорк, штат Нью-Йорк, США: ACM. стр. 23–28. дои : 10.1145/2532508.2532513. ISBN 978-1-4503-2465-6. S2CID  333956.
  109. ^ аб Брайтингер, Коринна; Лангер, Стефан; Ломмач, Андреас; Гипп, Бела (12 марта 2016 г.). «На пути к воспроизводимости в исследованиях рекомендательных систем». Пользовательское моделирование и взаимодействие с пользователем . 26 (1): 69–101. doi : 10.1007/s11257-016-9174-x. ISSN  0924-1868. S2CID  388764.
  110. ^ Саид, Алан; Беллогин, Алехандро (1 октября 2014 г.). «Сравнительная оценка рекомендательной системы». Материалы 8-й конференции ACM по рекомендательным системам . РекСис '14. Нью-Йорк, штат Нью-Йорк, США: ACM. стр. 129–136. дои : 10.1145/2645710.2645746. hdl : 10486/665450. ISBN 978-1-4503-2668-1. S2CID  15665277.
  111. ^ Верма, П.; Шарма, С. (2020). «Система рекомендаций на основе искусственного интеллекта». 2020 2-я Международная конференция по достижениям в области вычислений, управления связью и сетями (ICACCCN) . стр. 669–673. doi : 10.1109/ICACCCN51052.2020.9362962. ISBN 978-1-7281-8337-4. S2CID  232150789.
  112. ^ Ханал, СС (июль 2020 г.). «Систематический обзор: системы рекомендаций на основе машинного обучения для электронного обучения». Образовательные информационные технологии . 25 (4): 2635–2664. дои : 10.1007/s10639-019-10063-9. S2CID  254475908.
  113. ^ Аб Чжан, К. (февраль 2021 г.). «Искусственный интеллект в рекомендательных системах». Сложные и интеллектуальные системы . 7 : 439–457. дои : 10.1007/s40747-020-00212-w .
  114. ^ Ву, Л. (май 2023 г.). «Опрос по нейронным рекомендациям, ориентированным на точность: от совместной фильтрации к информативным рекомендациям». Транзакции IEEE по знаниям и инженерии данных . 35 (5): 4425–4445. arXiv : 2104.13030 . дои : 10.1109/TKDE.2022.3145690.
  115. ^ Самек, В. (март 2021 г.). «Объяснение глубоких нейронных сетей и не только: обзор методов и приложений». Труды IEEE . 109 (3): 247–278. arXiv : 2003.07631 . дои : 10.1109/JPROC.2021.3060483 .
  116. ^ Эйзенштейн, Дж. (октябрь 2019 г.). Введение в обработку естественного языка . Пресс-центр МТИ. ISBN 9780262042840.

дальнейшее чтение

Книги
Научные статьи

Внешние ссылки