stringtranslate.com

Оптическое вращение

Принцип действия поляриметра для измерения оптического вращения.
1. Источник света
2. Неполяризованный свет
3. Линейный поляризатор
4. Линейно поляризованный свет
5. Пробирка с образцом, содержащая исследуемые молекулы
6. Оптическое вращение, обусловленное молекулами
7. Вращающийся линейный анализатор
8. Детектор

Оптическое вращение , также известное как вращение поляризации или круговое двойное лучепреломление , представляет собой вращение ориентации плоскости поляризации вокруг оптической оси линейно поляризованного света при его прохождении через определенные материалы. Круговое двойное лучепреломление и круговой дихроизм — проявления оптической активности . Оптическая активность возникает только в хиральных материалах, лишенных микроскопической зеркальной симметрии. В отличие от других источников двойного лучепреломления , которые изменяют состояние поляризации луча, оптическую активность можно наблюдать в жидкостях . Это могут быть газы или растворы хиральных молекул , таких как сахара, молекулы со спиральной вторичной структурой , такие как некоторые белки, а также хиральные жидкие кристаллы . Это также можно наблюдать в хиральных твердых телах, таких как некоторые кристаллы с вращением между соседними кристаллическими плоскостями (например, кварц ) или метаматериалах .

При взгляде на источник света вращение плоскости поляризации может быть либо вправо ( правовращательное или правовращающееd -вращающееся, обозначаемое знаком (+), по часовой стрелке), либо влево ( левовращающее или левовращающееl-) . вращающийся, обозначенный (-), против часовой стрелки) в зависимости от того, какой стереоизомер является доминирующим. Например, сахароза и камфора являются d -вращающимися, тогда как холестерин L - вращающимися. Для данного вещества угол, на который поворачивается поляризация света определенной длины волны, пропорционален длине пути через материал и (для раствора) пропорционален его концентрации.

Оптическая активность измеряется с помощью поляризованного источника и поляриметра . Это инструмент, который особенно используется в сахарной промышленности для измерения концентрации сахара в сиропе и, как правило, в химии для измерения концентрации или энантиомерного соотношения хиральных молекул в растворе. Модуляция оптической активности жидкого кристалла, наблюдаемая между двумя пластинчатыми поляризаторами , является принципом работы жидкокристаллических дисплеев (используемых в большинстве современных телевизоров и компьютерных мониторов).

Формы

Правовращение и левовращение (также пишется левовращение ) [1] [2] [3] в химии и физике — это оптическое вращение плоскополяризованного света . С точки зрения наблюдателя правовращение относится к вращению по часовой стрелке или вправо, а левовращение относится к вращению против часовой стрелки или влево. [4] [5]

Химическое соединение , вызывающее правовращающее движение, является правовращающим или правовращающим , тогда как соединение, вызывающее левовращающее, является левовращающим или левовращающим . [6] Соединения с такими свойствами состоят из хиральных молекул и, как говорят, обладают оптической активностью. Если хиральная молекула является правовращающей, ее энантиомер (геометрическое зеркальное отображение) будет левовращающим, и наоборот. Энантиомеры вращают плоскополяризованный свет на одинаковое число градусов, но в противоположных направлениях.

Префиксы хиральности

Соединение можно обозначить как правовращающее, используя префикс «(+)-» или « d- ». Аналогично, левовращающее соединение может быть помечено префиксом «(-)-» или « l- ». Префиксы " d- " и " l- " в нижнем регистре устарели и отличаются от префиксов " D- " и " L- " ЗАГЛАВНЫМИ буквами . Префиксы « D- » и « L- » используются для обозначения энантиомера хиральных органических соединений в биохимии и основаны на абсолютной конфигурации соединения относительно (+)- глицеральдегида , который по определению является D -формой. Префикс, используемый для обозначения абсолютной конфигурации, не имеет прямого отношения к префиксу (+) или (-), используемому для обозначения оптического вращения в той же молекуле. Например, девять из девятнадцати L - аминокислот, встречающихся в природе в белках, несмотря на приставку L- , фактически правовращающие (при длине волны 589 нм), а D - фруктозу иногда называют «левулозой», поскольку она левовращающая.

Префиксы D- и L- описывают молекулу в целом, как и префиксы (+) и (-) оптического вращения . Напротив, префиксы ( R )- и ( S )- из правил приоритета Кана-Ингольда-Прелога характеризуют абсолютную конфигурацию каждого конкретного хирального стереоцентра с молекулой, а не свойство молекулы в целом. Молекула, имеющая ровно один хиральный стереоцентр (обычно асимметричный атом углерода ), может быть помечена ( R ) или ( S ), но молекуле, имеющей несколько стереоцентров, требуется более одной метки. Например, незаменимая аминокислота L -треонин содержит два хиральных стереоцентра и обозначается (2S , 3S ) -треонин. Между обозначениями R/S, D / L и (+)/(-) нет строгой связи , хотя некоторые корреляции существуют. Например, из встречающихся в природе аминокислот все представляют собой L , а большинство — ( S ). Для некоторых молекул ( R )-энантиомер является правовращающим (+) энантиомером, а в других случаях - левовращающим (-) энантиомером. Взаимосвязь должна определяться в каждом конкретном случае с помощью экспериментальных измерений или детального компьютерного моделирования. [7]

История

Две асимметричные кристаллические формы винной кислоты : правовращающая и левовращающая .
Эксперимент по измерению концентрации раствора сахарозы, демонстрирующий оптическое вращение.

Вращение ориентации линейно поляризованного света впервые наблюдалось в 1811 году в кварце французским физиком Франсуа Араго . [8] В 1820 году английский астроном сэр Джон Ф.В. Гершель обнаружил, что различные отдельные кристаллы кварца, кристаллические структуры которых являются зеркальными отражениями друг друга (см. иллюстрацию), вращают линейную поляризацию на одинаковую величину, но в противоположных направлениях. [9] Жан Батист Био также наблюдал вращение оси поляризации в некоторых жидкостях [10] и парах органических веществ, таких как скипидар . [11] В 1822 году Огюстен-Жан Френель обнаружил, что оптическое вращение можно объяснить как разновидность двойного лучепреломления : тогда как ранее известные случаи двойного лучепреломления были обусловлены разной скоростью света, поляризованного в двух перпендикулярных плоскостях, оптическое вращение объяснялось разной скоростью света. скорости право- и левополяризованного света. [12] С тех пор простые поляриметры используются для измерения концентрации простых сахаров, таких как глюкоза , в растворах. Фактически, одно из названий D -глюкозы (биологического изомера) — декстроза , имея в виду тот факт, что она заставляет линейно поляризованный свет вращаться в правую или правую сторону. Подобным образом левулоза, более известная как фруктоза , заставляет плоскость поляризации поворачиваться влево. Фруктоза обладает еще более сильным левовращающим действием, чем правовращающая глюкоза. Инвертный сахарный сироп , коммерчески получаемый путем гидролиза сахарозного сиропа до смеси простых сахаров, фруктозы и глюкозы, получил свое название из-за того, что в результате преобразования направление вращения «инвертируется» справа налево .

В 1849 году Луи Пастер решил проблему о природе винной кислоты . [13] Раствор этого соединения, полученный из живых существ (точнее, из винного осадка ), вращает плоскость поляризации проходящего через него света, но винная кислота, полученная путем химического синтеза , не оказывает такого эффекта, хотя ее реакции идентичны и его элементный состав одинаков. Пастер заметил, что кристаллы имеют две асимметричные формы, которые являются зеркальным отражением друг друга. Сортировка кристаллов вручную дала две формы соединения: растворы одной формы вращают поляризованный свет по часовой стрелке, а растворы другой формы вращают свет против часовой стрелки. Равное сочетание этих двух веществ не оказывает поляризующего эффекта на свет. Пастер пришел к выводу, что рассматриваемая молекула асимметрична и может существовать в двух разных формах, похожих друг на друга, как перчатки для левой и правой руки, и что органическая форма соединения состоит исключительно из одного типа.

В 1874 году Якобус Хенрикус ван 'т Хофф [14] и Джозеф Ахилл Ле Бель [15] независимо предположили, что это явление оптической активности в углеродных соединениях можно объяснить, предположив, что 4 насыщенные химические связи между атомами углерода и их соседями направлены к углам правильного тетраэдра. Если все 4 соседа различны, то существует два возможных порядка соседей вокруг тетраэдра, которые будут зеркальными отражениями друг друга. Это привело к лучшему пониманию трехмерной природы молекул.

В 1945 году Чарльз Уильям Банн [16] предсказал оптическую активность ахиральных структур, если направление распространения волны и ахиральная структура образуют экспериментальную структуру, отличную от своего зеркального отображения. Такая оптическая активность, обусловленная внешней киральностью , наблюдалась в 1960-х годах в жидких кристаллах. [17] [18]

В 1950 году Сергей Вавилов [19] предсказал оптическую активность, зависящую от интенсивности света, а эффект нелинейной оптической активности наблюдался в 1979 году в кристаллах иодата лития . [20]

Оптическая активность обычно наблюдается для проходящего света. Однако в 1988 году М. П. Сильверман обнаружил, что вращение поляризации может происходить и для света, отраженного от хиральных веществ. [21] Вскоре после этого было замечено, что киральные среды также могут отражать левосторонние и правосторонние волны с различной эффективностью. [22] Эти явления зеркального кругового двойного лучепреломления и зеркального кругового дихроизма совместно известны как зеркальная оптическая активность. Зеркальная оптическая активность природных материалов очень слаба.

В 1898 году Джагадиш Чандра Бос описал способность скрученных искусственных структур вращать поляризацию микроволн . [23] С начала XXI века развитие искусственных материалов привело к предсказанию [24] и реализации [25] [26] хиральных метаматериалов с оптической активностью, на порядки превышающей активность природных сред в оптической части спектр. Обнаружено, что внешняя хиральность, связанная с наклонным освещением метаповерхностей, лишенных двойной вращательной симметрии, приводит к большой линейной оптической активности при пропускании [27] и отражении [28] , а также к нелинейной оптической активности, превышающей активность йодата лития в 30 миллионов раз. . [29]

Теория

Оптическая активность возникает за счет молекул, растворенных в жидкости, или за счет самой жидкости, только если молекулы представляют собой один из двух (или более) стереоизомеров ; это известно как энантиомер . Структура такой молекулы такова, что она не идентична своему зеркальному изображению (которое может быть отражением другого стереоизомера или «противоположного энантиомера»). В математике это свойство также известно как киральность . Например, металлический стержень не является хиральным, поскольку его вид в зеркале неотличим от самого себя. Однако цоколь винта или лампочки (или спираль любого типа ) является хиральным; обычная правосторонняя резьба, если смотреть в зеркало, будет выглядеть как левосторонний винт (очень редко), который невозможно ввинтить в обычную (правостороннюю) гайку. У человека, рассматриваемого в зеркале, сердце будет на правой стороне, что является явным свидетельством хиральности, тогда как зеркальное отражение куклы вполне может быть неотличимо от самой куклы.

Чтобы проявить оптическую активность, жидкость должна содержать только один стереоизомер или преобладание одного стереоизомера. Если два энантиомера присутствуют в равных пропорциях, их эффекты компенсируются и оптическая активность не наблюдается; это называется рацемической смесью. Но когда имеется энантиомерный избыток , когда одного энантиомера больше, чем другого, аннулирование является неполным и наблюдается оптическая активность. Многие встречающиеся в природе молекулы представлены только одним энантиомером (например, многие сахара). Хиральные молекулы, полученные в области органической или неорганической химии, являются рацемическими, если в той же реакции не использовался хиральный реагент.

На фундаментальном уровне вращение поляризации в оптически активной среде вызвано круговым двойным лучепреломлением, и именно так его лучше всего можно понять. В то время как линейное двойное лучепреломление в кристалле предполагает небольшую разницу в фазовой скорости света двух разных линейных поляризаций, круговое двойное лучепреломление подразумевает небольшую разницу в скоростях между правой и левой круговой поляризацией . [12] Представьте себе один энантиомер в растворе как большое количество маленьких спиралей (или винтов), все правосторонние, но в случайной ориентации. Такое двойное лучепреломление возможно даже в жидкости, поскольку направление спиралей не зависит от их ориентации: даже когда направление одной спирали меняется на противоположное, она все равно кажется правосторонней. А свет с круговой поляризацией сам по себе является хиральным: когда волна распространяется в одном направлении, электрические (и магнитные) поля, составляющие ее, вращаются по часовой стрелке (или против часовой стрелки для противоположной круговой поляризации), описывая в пространстве правосторонний (или левый) винтовой узор. . Помимо объемного показателя преломления , который существенно снижает фазовую скорость света в любом диэлектрическом (прозрачном) материале по сравнению со скоростью света (в вакууме), существует дополнительное взаимодействие между киральностью волны и киральностью молекул. . Если их киральность одинакова, будет небольшой дополнительный эффект на скорость волны, но противоположная круговая поляризация будет испытывать противоположный небольшой эффект, поскольку ее хиральность противоположна киральности молекул.

Однако, в отличие от линейного двойного лучепреломления, естественное оптическое вращение (в отсутствие магнитного поля) не может быть объяснено с точки зрения локального тензора диэлектрической проницаемости материала (т. е. реакции заряда, которая зависит только от вектора локального электрического поля), поскольку соображения симметрии запрещают этот. Скорее, круговое двойное лучепреломление появляется только при рассмотрении нелокальности отклика материала, явления, известного как пространственная дисперсия . [30] Нелокальность означает, что электрические поля в одном месте материала вызывают токи в другом месте материала. Свет распространяется с конечной скоростью, и хотя он намного быстрее, чем электроны, имеет значение, будет ли реакция заряда естественным образом двигаться вместе с фронтом электромагнитной волны или противоположно ему. Пространственная дисперсия означает, что свет, движущийся в разных направлениях (разные волновые векторы), видит немного другой тензор диэлектрической проницаемости. Естественное оптическое вращение требует специального материала, но оно также основано на том факте, что волновой вектор света отличен от нуля, а ненулевой волновой вектор обходит ограничения симметрии на локальный отклик (нулевой волновой вектор). Однако реверсивная симметрия все еще существует, поэтому направление естественного оптического вращения должно быть «перевернуто» при изменении направления света, в отличие от магнитного вращения Фарадея . Все оптические явления имеют некоторое влияние нелокальности/волнового вектора, но оно обычно незначительно; естественное оптическое вращение, что весьма уникально, абсолютно требует этого. [30]

Фазовая скорость света в среде обычно выражается с помощью показателя преломления n , определяемого как скорость света (в свободном пространстве), деленная на его скорость в среде. Разница в показателях преломления между двумя круговыми поляризациями количественно определяет силу кругового двойного лучепреломления (вращение поляризации).

.

Хотя в природных материалах он невелик, для киральных метаматериалов сообщалось о примерах гигантского кругового двойного лучепреломления, приводящего к отрицательному показателю преломления для одной круговой поляризации. [31] [32]

Знакомое вращение оси линейной поляризации основано на понимании того, что линейно поляризованную волну можно также описать как суперпозицию ( сложение) левой и правой циркулярно поляризованных волн в равной пропорции. Разность фаз между этими двумя волнами зависит от ориентации линейной поляризации, которую мы назовем , а их электрические поля имеют относительную разность фаз, которая затем суммируется, создавая линейную поляризацию:

где – электрическое поле чистой волны, а и – две базисные функции с круговой поляризацией (имеющие нулевую разность фаз). Предполагая распространение в направлении +z , мы могли бы записать и через их компоненты x и y следующим образом:

где и — единичные векторы, а iмнимая единица , в данном случае представляющая сдвиг фазы на 90 градусов между компонентами x и y , на которые мы разложили каждую круговую поляризацию. Как обычно, когда речь идет о векторных обозначениях, подразумевается, что такие величины необходимо умножить на, а затем фактическое электрическое поле в любой момент определяется действительной частью этого произведения.

Подставив эти выражения для и в уравнение для получим:

Последнее уравнение показывает, что результирующий вектор имеет компоненты x и y в фазе и ориентирован точно в том направлении, как мы предполагали, что оправдывает представление любого линейно поляризованного состояния под углом как суперпозицию правых и левых компонентов с круговой поляризацией с относительная разность фаз . Теперь предположим передачу через оптически активный материал, который вызывает дополнительную разность фаз между правой и левой циркулярно поляризованными волнами . Назовем результат прохождения исходной волны линейно поляризованной под углом через эту среду. Это применит дополнительные фазовые коэффициенты и к компонентам с правой и левой круговой поляризацией :

Используя аналогичную математику, как указано выше, мы находим:

таким образом описывая волну, линейно поляризованную под углом , таким образом повернутую относительно приходящей волны:

Выше мы определили разницу показателей преломления для право- и левоциркулярно поляризованных волн . Учитывая распространение на длину L в таком материале, между ними будет возникать дополнительная разность фаз (как мы использовали выше), определяемая как:

,

где длина волны света (в вакууме). Это вызовет поворот линейной оси поляризации, как мы показали.

В общем, показатель преломления зависит от длины волны (см. Дисперсия ), а дифференциальный показатель преломления также будет зависеть от длины волны. Результирующее изменение вращения в зависимости от длины волны света называется оптической вращательной дисперсией (ORD). Спектры ДОВ и спектры кругового дихроизма связаны соотношениями Крамерса-Кронига . Полное знание одного спектра позволяет рассчитать другой.

Таким образом, мы обнаруживаем, что степень вращения зависит от цвета света (для измерений обычно используется желтая линия D натрия около длины волны 589 нм ) и прямо пропорциональна длине пути через вещество и величине кругового двойного лучепреломления. материал , который для раствора можно рассчитать на основе удельного вращения вещества и его концентрации в растворе.

Хотя оптическую активность обычно считают свойством жидкостей, особенно водных растворов , она также наблюдалась в кристаллах, таких как кварц (SiO 2 ). Хотя кварц обладает существенным линейным двойным лучепреломлением, этот эффект аннулируется, когда распространение происходит вдоль оптической оси . В этом случае наблюдается вращение плоскости поляризации из-за относительного вращения между плоскостями кристалла, что делает кристалл формально хиральным, как мы определили его выше. Вращение плоскостей кристалла может быть правым или левым, что опять же приводит к противоположной оптической активности. С другой стороны, аморфные формы кремнезема , такие как плавленый кварц , подобно рацемической смеси хиральных молекул, не обладают чистой оптической активностью, поскольку та или иная кристаллическая структура не доминирует во внутренней молекулярной структуре вещества.

Приложения

Для чистого вещества в растворе, если цвет и длина пути фиксированы и известно удельное вращение , наблюдаемое вращение можно использовать для расчета концентрации. Такое использование делает поляриметр очень важным инструментом для тех, кто продает или использует сахарные сиропы оптом.

Сравнение с эффектом Фарадея

Вращение плоскости поляризации света также может происходить из-за эффекта Фарадея , который включает в себя статическое магнитное поле . Однако это отдельное явление, которое не классифицируется как «оптическая активность». Оптическая активность является взаимной, т.е. она одинакова для противоположных направлений распространения волн через оптически активную среду, например вращения поляризации по часовой стрелке с точки зрения наблюдателя. В случае оптически активных изотропных сред вращение одинаково для любого направления распространения волны. Напротив, эффект Фарадея невзаимен, т.е. противоположные направления распространения волн через среду Фарадея приведут к вращению поляризации по часовой стрелке и против часовой стрелки с точки зрения наблюдателя. Фарадеевское вращение зависит от направления распространения относительно направления приложенного магнитного поля. Все соединения могут проявлять вращение поляризации в присутствии приложенного магнитного поля при условии, что (компонент) магнитного поля ориентирован в направлении распространения света. Эффект Фарадея — одно из первых открытий связи между светом и электромагнитными эффектами.

Смотрите также

Рекомендации

  1. ^ Первый компонент слова dextro- происходит от латинского слова dexter , что означает «правый» (в отличие от левого). Laevo- или лево- происходит от латинского laevus , что означает «левая сторона».
  2. ^ Эквивалентные французские термины — декстрогир и левогир . В английском языке они используются нечасто.
  3. ^ Себти; Гамильтон, ред. (2001). Ингибиторы фарнезилтрансферазы в терапии рака. п. 126. ИСБН 9780896036291. Проверено 18 октября 2015 г.
  4. ^ Химия LibreTexts - Поляриметрия
  5. ^ «Определение оптического вращения и удельного вращения» (PDF) . Международная Фармакопея. Всемирная организация здравоохранения. 2017. ISBN 9789241550031. Архивировано (PDF) из оригинала 9 октября 2022 г.
  6. ^ Соломонс, Т.В. Грэм; Фрайл, Грейг Б. (2004). Органическая химия (8-е изд.). Хобокен: John Wiley & Sons, Inc.
  7. ^ См., например, Стивенс, П.Дж.; Девлин, Ф.Дж.; Чизмен, младший; Фриш, MJ; Бортолини, О.; Бесс, П. (2003). «Определение абсолютной конфигурации с использованием расчета оптического вращения». Хиральность . 15 : С57–64. дои : 10.1002/чир.10270. ПМИД  12884375.
  8. ^ Араго (1811) «Mémoire sur une modification remarquable qu'éprouvent les rayons lumineux dans leur pass à travers somes corps Diaphanes et sur quelques autres nouveaux phénomènes d'optique» (Мемуары о замечательной модификации, которую световые лучи испытывают во время прохождения через определенные полупрозрачные вещества и некоторые другие новые оптические явления), Mémoires de la classe des Sciences Mathématique et Physiques de l'Institut Impérial de France , 1st part: 93–134.
  9. ^ Гершель, JFW (1820) «О вращении пластин горного хрусталя в плоскостях поляризации лучей света, связанном с некоторыми особенностями его кристаллизации», Труды Кембриджского философского общества , 1  : 43–51. .
  10. ^ Био, Ж.Б. (1815) «Феномен последовательной поляризации, наблюдаемый в однородных жидкостях» (Феномен последовательной поляризации, наблюдаемый в однородных жидкостях), Bulletin des Sciences, par la Société Philomatique de Paris , 190–192.
  11. Био (1818 и 1819) «Extrait d'un mémoire sur les Rotations que Somelesвещества, наложенные на оси поляризации лучей света» (Отрывок из мемуаров о [оптических] вращениях, которые некоторые вещества оказывают на оси поляризации света лучи), Annales de Chimie et de Physique , 2-я серия, 9  : 372-389; 10  :63-81; об опытах Био с парами скипидара ( vapeur d'essence de térébenthine ) см. стр. 72-81.
  12. ^ аб А. Френель, «Mémoire sur la double refraction que les lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les parts parallèles à l'axe», прочитано 9 декабря 1822 года; напечатано в журналах Х. де Сенармона, Э. Верде и Л. Френеля (ред.), Oeuvres complètes d'Augustin Fresnel , vol. 1 (1866), стр. 731–51; переведено как «Мемуары о двойном преломлении, которому подвергаются световые лучи при прохождении игл кварца в направлениях, параллельных оси», Зенодо4745976 , 2021 (открытый доступ); особенно §13.
  13. ^ Пастер, Л. (1850) «Recherches sur les proprietés spécifiques des deux acides qui composent l'acide racémique» (Исследования специфических свойств двух кислот, составляющих рацемическую кислоту), Annales de chimie et de Physique , 3-я серия , 28  : 56–99; см. также приложение, стр. 99–117.
  14. ^ ван 'т Хофф, Дж. Х. (1874) «Sur les Formulas de Structure dans l'espace» (О структурных формулах в пространстве), Archives Néerlandaises des Sciences Exactes et Naturelles , 9  : 445–454.
  15. ^ Ле Бель, Ж.-А. (1874) «Sur les Relations qui Existent entre les Formulas Atomiques des Corps Organiques et le pouvoir rotatoire de leurs Dissolutions» (Об отношениях, которые существуют между атомными формулами органических веществ и вращательной силой их растворов), Bulletin de la Société Химик де Пари , 22  : 337–347.
  16. ^ Банн, CW (1945). Химическая кристаллография . Нью-Йорк: Издательство Оксфордского университета. п. 88.
  17. ^ Р. Уильямс (1968). «Оптический вращательный эффект в нематической жидкой фазе п-азоксианизола». Письма о физических отзывах . 21 (6): 342. Бибкод : 1968PhRvL..21..342W. doi :10.1103/PhysRevLett.21.342.
  18. ^ Р. Уильямс (1969). «Оптико-вращательная сила и линейный электрооптический эффект в нематических жидких кристаллах п-азоксианизола». Журнал химической физики . 50 (3): 1324. Бибкод : 1969JChPh..50.1324W. дои : 10.1063/1.1671194.
  19. ^ Вавилов, С.И. (1950). Микроструктура Света . Москва: Издательство АН СССР.
  20. ^ Ахманов, С.А.; Жданов Б.В.; Желудев Н.И.; Ковригин А.И.; Кузнецов, В.И. (1979). «Нелинейная оптическая активность в кристаллах». Письма ЖЭТФ . 29 : 264.
  21. ^ Сильверман, М.; Ричи, Н.; Кушман, Г.; Фишер, Б. (1988). «Экспериментальные конфигурации, использующие оптическую фазовую модуляцию для измерения киральной асимметрии в свете, зеркально отраженном от естественной гиротропной среды». Журнал Оптического общества Америки А. 5 (11): 1852. Бибкод : 1988JOSAA...5.1852S. дои : 10.1364/JOSAA.5.001852.
  22. ^ Сильверман, М.; Бадоз, Дж.; Бриат, Б. (1992). «Киральное отражение от естественно оптически активной среды». Оптические письма . 17 (12): 886. Бибкод : 1992OptL...17..886S. дои : 10.1364/OL.17.000886. ПМИД  19794663.
  23. ^ Бозе, Джагадис Чундер (1898). «О вращении плоскости поляризации электрических волн закрученной структурой». Труды Королевского общества . 63 (389–400): 146–152. дои : 10.1098/rspl.1898.0019. JSTOR  115973. S2CID  89292757.
  24. ^ Свирко, Ю.; Желудев Н.И.; Осипов, М. (2001). «Слоистые хиральные металлические микроструктуры с индуктивной связью». Письма по прикладной физике . 78 (4): 498. Бибкод : 2001ApPhL..78..498S. дои : 10.1063/1.1342210.
  25. ^ Кувата-Гоноками, М.; Сайто, Н.; Ино, Ю.; Кауранен, М.; Ефимовы, К.; Валлиус, Т.; Турунен Дж.; Свирко, Ю. (2005). «Гигантская оптическая активность в квазидвумерных плоских наноструктурах». Письма о физических отзывах . 95 (22): 227401. Бибкод : 2005PhRvL..95v7401K. doi : 10.1103/PhysRevLett.95.227401. ПМИД  16384264.
  26. ^ Плам, Э.; Федотов В.А.; Шванеке, А.С.; Желудев Н.И.; Чен, Ю. (2007). «Гигантская оптическая гиротропия из-за электромагнитной связи». Письма по прикладной физике . 90 (22): 223113. Бибкод : 2007ApPhL..90v3113P. дои : 10.1063/1.2745203.
  27. ^ Плам, Э.; Федотов В.А.; Желудев Н.И. (2008). «Оптическая активность во внешне хиральном метаматериале» (PDF) . Письма по прикладной физике . 93 (19): 191911. arXiv : 0807.0523 . Бибкод : 2008ApPhL..93s1911P. дои : 10.1063/1.3021082. S2CID  117891131.
  28. ^ Плам, Э.; Федотов В.А.; Желудев Н.И. (2016). «Зеркальная оптическая активность ахиральных метаповерхностей» (PDF) . Письма по прикладной физике . 108 (14): 141905. Бибкод : 2016ApPhL.108n1905P. дои : 10.1063/1.4944775. hdl : 10220/40854.
  29. ^ Рен, М.; Слива, Э.; Сюй, Дж.; Желудев Н.И. (2012). «Гигантская нелинейная оптическая активность в плазмонном метаматериале». Природные коммуникации . 3 : 833. Бибкод : 2012NatCo...3..833R. дои : 10.1038/ncomms1805 . ПМИД  22588295.
  30. ^ аб Л.Д. Ландау ; Е. М. Лифшиц ; Л. П. Питаевский (1984). Электродинамика сплошных сред . Том. 8 (2-е изд.). Баттерворт-Хайнеманн . стр. 362–365. ISBN 978-0-7506-2634-7.
  31. ^ Плам, Э.; Чжоу, Дж.; Донг, Дж.; Федотов В.А.; Кошный, Т.; Сукулис, CM; Желудев Н.И. (2009). «Метаматериал с отрицательным индексом хиральности» (PDF) . Физический обзор B . 79 (3): 035407. Бибкод : 2009PhRvB..79c5407P. doi : 10.1103/PhysRevB.79.035407. S2CID  119259753.
  32. ^ Чжан, С.; Парк, Ю.-С.; Ли, Дж.; Лу, Х.; Чжан, В.; Чжан, X. (2009). «Отрицательный показатель преломления в хиральных метаматериалах». Письма о физических отзывах . 102 (2): 023901. Бибкод : 2009PhRvL.102b3901Z. doi : 10.1103/PhysRevLett.102.023901. ПМИД  19257274.

дальнейшее чтение