stringtranslate.com

Категория (математика)

Это категория с набором объектов A, B, C и набором морфизмов, обозначаемых f, g, g ∘ f , а петли представляют собой тождественные стрелки. Эта категория обычно обозначается жирным шрифтом 3 .

В математике категория (иногда называемая абстрактной категорией , чтобы отличить ее от конкретной категории ) представляет собой совокупность «объектов», связанных «стрелками». Категория имеет два основных свойства: возможность ассоциативно составлять стрелки и наличие идентификационной стрелки для каждого объекта. Простой пример — категория множеств , объекты которых — множества , а стрелки — функции .

Теория категорий — это раздел математики, который стремится обобщить всю математику с точки зрения категорий, независимо от того, что представляют собой их объекты и стрелки. Практически каждую ветвь современной математики можно описать с помощью категорий, и это часто раскрывает глубокие идеи и сходства между, казалось бы, разными областями математики. Таким образом, теория категорий обеспечивает альтернативную основу математики для теории множеств и других предлагаемых аксиоматических оснований. В общем, объекты и стрелки могут быть абстрактными объектами любого типа, а понятие категории обеспечивает фундаментальный и абстрактный способ описания математических объектов и их отношений.

Помимо формализации математики, теория категорий также используется для формализации многих других систем в информатике, таких как семантика языков программирования .

Две категории считаются одинаковыми, если они имеют один и тот же набор объектов, один и тот же набор стрелок и один и тот же ассоциативный способ составления любой пары стрелок. Две разные категории также могут считаться « эквивалентными » для целей теории категорий, даже если они не имеют совершенно одинаковой структуры.

Хорошо известные категории обозначаются коротким словом с заглавной буквы или аббревиатурой, выделенной жирным шрифтом или курсивом: примеры включают Set , категорию множеств и функций множеств ; Кольцо — категория колец и гомоморфизмов колец ; и Top , категория топологических пространств и непрерывных отображений . Все предыдущие категории имеют карту идентичности в виде стрелок идентичности, а композицию — в виде ассоциативной операции над стрелками.

Классический и до сих пор широко используемый текст по теории категорий — «Категории для работающего математика» Сондерса Мак Лейна . Другие ссылки приведены в разделе «Ссылки» ниже. Основные определения в этой статье содержатся в первых нескольких главах любой из этих книг.

Любой моноид можно понимать как категорию особого рода (с одним объектом, самоморфизмы которого представлены элементами моноида), как и любой предзаказ .

Определение

Существует множество эквивалентных определений категории. [1] Одним из наиболее часто используемых определений является следующее. Категория С состоит из

такие, что выполняются следующие аксиомы:

Мы пишем f : ab и говорим, что « f — морфизм из a в b ». Мы пишем hom( a , b ) (или hom C ( a , b ), когда может возникнуть путаница относительно того, к какой категории относится hom( a , b )) для обозначения hom-класса всех морфизмов от a до b . [2]

Некоторые авторы записывают совокупность морфизмов в «диаграммном порядке», записывая f;g или fg вместо gf .

С помощью этих аксиом можно доказать, что для каждого объекта существует ровно один тождественный морфизм. Часто отображение, присваивающее каждому объекту его тождественный морфизм, рассматривается как дополнительная часть структуры категории, а именно функция класса i: ob(C) → mor(C). Некоторые авторы используют небольшой вариант определения, в котором каждый объект идентифицируется соответствующим тождественным морфизмом. Это вытекает из идеи, что фундаментальными данными категорий являются морфизмы, а не объекты. Фактически, категории можно определять вообще без ссылки на объекты, используя частичную бинарную операцию с дополнительными свойствами.

Маленькие и большие категории

Категория C называется маленькой, если obj( C ) и hom( C ) на самом деле являются множествами , а не собственными классами , и большой в противном случае. Локально малая категория — это такая категория, что для всех объектов a и b hom-класс hom( a , b ) представляет собой множество, называемое homset . Многие важные категории в математике (например, категория множеств) хотя и не малы, но, по крайней мере, локально малы. Поскольку в малых категориях объекты образуют множество, малую категорию можно рассматривать как алгебраическую структуру, аналогичную моноиду , но не требующую свойств замыкания . С другой стороны, большие категории можно использовать для создания «структур» алгебраических структур.

Примеры

Класс всех множеств (как объектов) вместе со всеми функциями между ними (как морфизмов) , где композиция морфизмов представляет собой обычную композицию функций , образует большую категорию Set . Это самая основная и наиболее часто используемая категория в математике. Категория Rel состоит из всех множеств (как объектов) с бинарными отношениями между ними (как морфизмов). Абстрагирование от отношений вместо функций приводит к аллегориям , специальному классу категорий.

Любой класс можно рассматривать как категорию, единственными морфизмами которой являются тождественные морфизмы. Такие категории называются дискретными . Для любого данного множества I дискретная категория на I — это небольшая категория, в которой элементы I являются объектами и только тождественные морфизмы в качестве морфизмов. Дискретные категории — это самый простой вид категорий.

Любой предварительно упорядоченный набор ( P , ≤ ) образует небольшую категорию, где объекты являются членами P , морфизмы представляют собой стрелки, указывающие от x к y , когда xy . Более того, если антисимметричен , между любыми двумя объектами может быть не более одного морфизма. Существование тождественных морфизмов и компонуемость морфизмов гарантируются рефлексивностью и транзитивностью предпорядка. По тому же аргументу любое частично упорядоченное множество и любое отношение эквивалентности можно рассматривать как малую категорию. Любое порядковое число можно рассматривать как категорию, если рассматривать его как упорядоченный набор .

Любой моноид (любая алгебраическая структура с одной ассоциативной бинарной операцией и единичным элементом ) образует небольшую категорию с единственным объектом x . (Здесь x — любое фиксированное множество.) Морфизмы от x до x — это в точности элементы моноида, тождественный морфизм x — это тождество моноида, а категориальная композиция морфизмов задается операцией моноида. Некоторые определения и теоремы о моноидах могут быть обобщены на категории.

Аналогичным образом любую группу можно рассматривать как категорию с единственным объектом, в которой каждый морфизм обратим , то есть для каждого морфизма f существует морфизм g , который является как левым, так и правым обратным к f при композиции. Морфизм, обратимый в этом смысле, называется изоморфизмом .

Группоид — это категория , в которой каждый морфизм является изоморфизмом. Группоиды — это обобщения групп, групповых действий и отношений эквивалентности . Фактически, с точки зрения категории, единственное различие между группоидом и группой состоит в том, что группоид может иметь более одного объекта, но группа должна иметь только один. Рассмотрим топологическое пространство X и зафиксируем базовую точку X , тогда это фундаментальная группа топологического пространства X и базовая точка , и как множество оно имеет структуру группы; если затем позволить базовой точке пробегать все точки X и объединить все , то набор, который мы получим , будет иметь только структуру группоида (который называется фундаментальным группоидом X ): две петли (при отношении эквивалентности гомотопия) могут иметь разные базовые точки, поэтому они не могут умножаться друг на друга. На языке категорий это означает, что здесь два морфизма не могут иметь один и тот же исходный объект (или целевой объект, поскольку в этом случае для любого морфизма исходный объект и целевой объект одинаковы: базовая точка), поэтому они не могут скомпоноваться с друг друга.

Ориентированный граф.

Любой ориентированный граф порождает небольшую категорию: объекты — это вершины графа, а морфизмы — это пути в графе (дополняемые при необходимости циклами ), где композиция морфизмов представляет собой конкатенацию путей. Такая категория называется свободной категорией, порожденной графом.

Класс всех предупорядоченных множеств с функциями, сохраняющими порядок (т. е. монотонно возрастающими функциями) в качестве морфизмов, образует категорию Ord . Это конкретная категория , т. е. категория, полученная добавлением некоторого типа структуры в Set и требованием, чтобы морфизмы были функциями, которые соблюдали эту добавленную структуру.

Класс всех групп с групповыми гомоморфизмами в качестве морфизмов и функциональной композицией в качестве операции композиции образует большую категорию Grp . Как и Ord , Grp — это конкретная категория. Категория Ab , состоящая из всех абелевых групп и их групповых гомоморфизмов, является полной подкатегорией Grp и прототипом абелевой категории .

Класс всех графов образует еще одну конкретную категорию, где морфизмы — это гомоморфизмы графов (т. е. отображения между графами, которые переводят вершины в вершины и ребра в ребра таким образом, чтобы сохранять все отношения смежности и инцидентности).

Другие примеры конкретных категорий приведены в следующей таблице.

Пучки волокон с картами связок между ними образуют конкретную категорию.

Категория Cat состоит из всех малых категорий с функторами между ними в качестве морфизмов.

Строительство новых категорий

Двойная категория

Любую категорию C можно рассматривать как новую категорию по-другому: объекты те же, что и в исходной категории, но стрелки соответствуют объектам исходной категории, перевернутым. Это называется двойственной или противоположной категорией и обозначается Cop .

Категории продукта

Если C и D — категории, можно сформировать категорию произведения C × D : объекты — это пары, состоящие из одного объекта из C и одного из D , а морфизмы также являются парами, состоящими из одного морфизма в C и одного в D. Такие пары можно составлять покомпонентно .

Виды морфизмов

Морфизм f  : ab называется ​

Любая ретракция является эпиморфизмом. Каждое сечение является мономорфизмом. Следующие три утверждения эквивалентны:

Отношения между морфизмами (такими как fg = h ) удобнее всего представлять с помощью коммутативных диаграмм , где объекты представлены в виде точек, а морфизмы — в виде стрелок.

Виды категорий

Смотрите также

Примечания

  1. ^ Барр и Уэллс 2005, Глава 1.
  2. ^ Некоторые авторы вместо этого пишут Mor( a , b ) или просто C ( a , b ).

Рекомендации