Гетерозис , гибридная сила или усиление аутбридинга — это улучшенная или усиленная функция любого биологического качества в гибридном потомстве. Потомство является гетерозисным, если его черты улучшены в результате смешивания генетических вкладов его родителей. Гетерозисное потомство часто имеет черты, которые представляют собой нечто большее, чем простое добавление черт родителей, и могут быть объяснены менделевским или неменделевским наследованием . [1] Типичные гетерозисные/гибридные черты, представляющие интерес в сельском хозяйстве, — это более высокая урожайность, более быстрое созревание, стабильность, засухоустойчивость [2] и т. д.
Предлагая термин гетерозис для замены старого термина гетерозиготность , Г. Х. Шулл стремился избежать ограничения термина эффектами, которые можно объяснить гетерозиготностью в менделевском наследовании. [3]
Физиологическая сила организма, проявляющаяся в скорости его роста, высоте и общей крепости, положительно коррелирует со степенью несходства в гаметах, в результате слияния которых был образован организм... Чем больше различий между объединяющимися гаметами — по крайней мере, в определенных пределах — тем в целом больше количество стимуляции... Эти различия не обязательно должны быть менделевскими по своему наследованию... Чтобы избежать предположения, что все генотипические различия, которые стимулируют деление клеток, рост и другие физиологические активности организма, являются менделевскими по своему наследованию, а также для краткости выражения, я предлагаю... принять слово «гетерозис».
Гетерозис часто обсуждается как противоположность инбридинговой депрессии , хотя различия в этих двух концепциях можно увидеть в эволюционных соображениях, таких как роль генетической изменчивости или влияние генетического дрейфа в небольших популяциях на эти концепции. Инбридинговая депрессия возникает, когда у родственных родителей есть дети с чертами , которые отрицательно влияют на их приспособленность, в основном из-за гомозиготности . В таких случаях ауткроссинг должен приводить к гетерозису.
Не все ауткроссы приводят к гетерозису. Например, когда гибрид наследует черты от своих родителей, которые не полностью совместимы, приспособленность может быть снижена. Это форма аутбридинговой депрессии , последствия которой аналогичны инбридинговой депрессии. [4]
С начала 1900-х годов были разработаны две конкурирующие генетические гипотезы, не обязательно взаимоисключающие, для объяснения гибридной силы. Совсем недавно также был установлен эпигенетический компонент гибридной силы. [5] [6]
Когда популяция мала или инбридинговая, она имеет тенденцию терять генетическое разнообразие. Инбридинговая депрессия — это потеря приспособленности из-за потери генетического разнообразия. Инбридинговые штаммы имеют тенденцию быть гомозиготными по рецессивным аллелям , которые являются умеренно вредными (или производят признак, нежелательный с точки зрения селекционера). Гетерозис или гибридная сила, с другой стороны, — это тенденция аутбридинговых штаммов превосходить обоих инбридинговых родителей по приспособленности.
Селекция растений и животных, включая гибридизацию, началась задолго до того, как появилось понимание основополагающих научных принципов. В начале 20-го века, после того, как законы Менделя были поняты и приняты, генетики взялись объяснить превосходящую силу многих растительных гибридов. Были разработаны две конкурирующие гипотезы, которые не являются взаимоисключающими: [7]
Доминирование и сверхдоминирование имеют разные последствия для профиля экспрессии генов особей. Если сверхдоминирование является основной причиной преимуществ гетерозиса в приспособленности, то должна быть повышенная экспрессия определенных генов у гетерозиготного потомства по сравнению с гомозиготными родителями. С другой стороны, если причиной является доминирование, то у гетерозиготного потомства должно быть меньше генов, чем у родителей. Кроме того, для любого данного гена экспрессия должна быть сопоставима с той, которая наблюдается у более приспособленного из двух родителей. В любом случае, ауткроссинговые спаривания обеспечивают преимущество маскировки вредных рецессивных аллелей в потомстве. Это преимущество было предложено как основной фактор в поддержании полового размножения среди эукариот, как обобщено в статье Эволюция полового размножения .
Какой из двух механизмов является «главной» причиной гетерозиса, было научным спором в области генетики . [12] Популяционный генетик Джеймс Кроу (1916–2012) в молодые годы считал, что сверхдоминирование является основным фактором гибридной силы. В 1998 году он опубликовал ретроспективный обзор развивающейся науки. [13] По словам Кроу, демонстрация нескольких случаев преимущества гетерозиготы у дрозофилы и других организмов сначала вызвала большой энтузиазм по поводу теории сверхдоминирования среди ученых, изучающих гибридизацию растений. Но сверхдоминирование подразумевает, что урожайность инбредного штамма должна снижаться по мере того, как инбредные штаммы отбираются для производительности их гибридных скрещиваний, поскольку доля вредных рецессивов в инбредной популяции увеличивается. На протяжении многих лет эксперименты в области генетики растений доказали, что происходит обратное, что урожайность увеличивается как в инбредных штаммах, так и в гибридах, что предполагает, что доминирование само по себе может быть достаточным для объяснения превосходной урожайности гибридов. Только несколько убедительных случаев сверхдоминирования были зарегистрированы во всей генетике. С 1980-х годов, по мере накопления экспериментальных доказательств, теория доминирования вернулась.
Ворона написала:
Текущая точка зрения... заключается в том, что гипотеза доминирования является основным объяснением снижения инбридинга и [высокого] выхода гибридов. Существует мало статистических доказательств вклада сверхдоминирования и эпистаза . Но получают ли лучшие гибриды дополнительный импульс от сверхдоминирования или благоприятных эпистатических вкладов, остается открытым вопросом. [13]
Эпигенетический вклад в гетерозис был установлен у растений, [6] и также был зарегистрирован у животных. [14] МикроРНК (миРНК), открытые в 1993 году, представляют собой класс некодирующих малых РНК, которые подавляют трансляцию матричных РНК (мРНК) или вызывают деградацию мРНК. [15] В гибридных растениях большинство микроРНК имеют неаддитивную экспрессию (она может быть выше или ниже уровней у родителей). [6] Это говорит о том, что малые РНК участвуют в росте, жизнеспособности и адаптации гибридов. [6]
Эффекты «гетерозиса без гибридности» на размер растения были продемонстрированы на генетически изогенных триплоидных (автополиплоидных) растениях F1, где отцовский геном избыточных триплоидов F1 демонстрирует положительный гетерозис, тогда как материнский геном избыточных триплоидов F1 демонстрирует отрицательный гетерозис. [16] Такие результаты показывают, что эффекты гетерозиса с зависящей от дозы генома эпигенетической основой могут быть получены у потомков F1, которые являются генетически изогенными (т.е. не имеют гетерозиготности). [16] [17] Было показано [5] , что гибридная сила в аллополиплоидном гибриде двух видов Arabidopsis была обусловлена эпигенетическим контролем в восходящих областях двух генов, что вызвало серьезные нисходящие изменения в накоплении хлорофилла и крахмала. Механизм включает ацетилирование или метилирование определенных аминокислот в гистоне H3 , белке, тесно связанном с ДНК, который может либо активировать, либо подавлять связанные гены.
Одним из примеров того, где определенные гены могут быть важны для гетерозиса у позвоночных животных, является главный комплекс гистосовместимости (MHC). Позвоночные наследуют несколько копий MHC класса I и MHC класса II от каждого родителя, которые используются в презентации антигена как часть адаптивной иммунной системы. Каждая отдельная копия генов способна связывать и представлять разный набор потенциальных пептидов Т-лимфоцитам . Эти гены высокополиморфны во всех популяциях, но более схожи в меньших, более тесно связанных популяциях. Скрещивание между более генетически далекими особями снижает вероятность наследования двух одинаковых или схожих аллелей, что позволяет представить более разнообразный спектр пептидов. Таким образом, это увеличивает вероятность того, что любой конкретный патоген будет распознан, и означает, что больше антигенных белков на любом патогене, вероятно, будут распознаны, что обеспечивает больший диапазон активации Т-клеток, а значит, и более сильный ответ. Это также означает, что иммунитет, приобретенный к патогену, направлен против большего диапазона антигенов, а это означает, что патоген должен мутировать больше, прежде чем иммунитет будет утрачен. Таким образом, гибриды менее склонны поддаваться патогенным заболеваниям и более способны бороться с инфекцией. Однако это может быть причиной аутоиммунных заболеваний. [ необходима цитата ]
Скрещивания между инбредными особями из разных гетерозисных групп приводят к появлению сильных гибридов F1 со значительно большим гетерозисом, чем гибриды F1 от инбредных особей в пределах той же гетерозисной группы или модели. Гетерозисные группы создаются селекционерами растений для классификации инбредных линий и могут постепенно улучшаться путем реципрокного рекуррентного отбора.
Гетерозис используется для повышения урожайности, однородности и энергии. Методы гибридной селекции используются в кукурузе , сорго , рисе , сахарной свекле , луке , шпинате , подсолнечнике , брокколи и для создания более психоактивной конопли .
Почти вся полевая кукуруза ( маис ), выращиваемая в большинстве развитых стран, проявляет гетерозис. Современные гибриды кукурузы значительно превосходят обычные сорта по урожайности и лучше реагируют на удобрения .
Гетерозис кукурузы был широко продемонстрирован в начале 20-го века Джорджем Х. Шаллом и Эдвардом М. Истом после того, как гибридная кукуруза была изобретена доктором Уильямом Джеймсом Билом из Мичиганского государственного университета на основе работы, начатой в 1879 году по настоянию Чарльза Дарвина . Работа доктора Била привела к первому опубликованному отчету о полевом эксперименте , демонстрирующем гибридную силу кукурузы, Юджином Дэвенпортом и Перри Холденом в 1881 году. Эти различные пионеры ботаники и смежных областей показали, что скрещивания инбредных линий, полученных из Southern dent и Northern flint, соответственно, показали существенный гетерозис и превзошли по урожайности обычные сорта той эпохи. Однако в то время такие гибриды не могли быть экономически выгодны для использования фермерами в больших масштабах. Дональд Ф. Джонс на Коннектикутской сельскохозяйственной экспериментальной станции в Нью-Хейвене изобрел первый практический метод производства высокоурожайной гибридной кукурузы в 1914–1917 годах. Метод Джонса дал двойной гибрид, который требует двух этапов скрещивания, работающих с четырьмя различными исходными инбредными линиями. Более поздняя работа селекционеров кукурузы создала инбредные линии с достаточной силой для практического производства коммерческого гибрида за один этап, гибриды одинарного скрещивания. Гибриды одинарного скрещивания производятся всего из двух исходных родительских инбредных линий. Они, как правило, более энергичны и также более однородны, чем более ранние гибриды двойного скрещивания. Процесс создания этих гибридов часто включает удаление метелок .
Гибриды кукурузы умеренного климата получены из двух основных гетерозисных групп: «Iowa Stiff Stalk Synthetic» и «nonstiffsteal». [ необходима ссылка ]
Гибридный рис выращивают во многих странах, включая Китай, Индию, Вьетнам и Филиппины. [18] По сравнению с инбредными линиями, гибриды дают примерно на 20% больше урожая и составляют 45% площади посевов риса в Китае. [19] Производство риса значительно возросло в Китае из-за интенсивного использования гибридного риса. В Китае усилия привели к созданию супергибридного штамма риса ('LYP9') с производительностью около 15 тонн с гектара. В Индии также несколько сортов показали высокую жизнеспособность, включая 'RH-10' и 'Suruchi 5401'. [ необходима цитата ]
Поскольку рис является самоопыляющимся видом, для получения гибридов из отдельных линий необходимо использовать линии с мужской стерильностью. Наиболее распространенным способом достижения этого является использование линий с генетической мужской стерильностью, поскольку ручная кастрация не является оптимальным способом для крупномасштабной гибридизации. [20] Первое поколение гибридного риса было разработано в 1970-х годах. Оно основано на трех линиях: линии с цитоплазматической мужской стерильностью (CMS) , поддерживающей линии и линии-восстановителя. [19] Второе поколение было широко принято в 1990-х годах. [19] Вместо линии CMS используется чувствительная к окружающей среде генная мужская стерильная линия (EGMS), стерильность которой может быть отменена в зависимости от света или температуры. [20] Это устраняет необходимость в поддерживающем средстве, что делает процесс гибридизации и разведения более эффективным (хотя и все еще требующим большого ухода). Линии второго поколения показывают увеличение урожайности на 5-10% по сравнению с линиями первого поколения. [20] Третье и текущее поколение использует ядерную мужскую стерильную линию (NMS). Линии третьего поколения имеют рецессивный ген стерильности, и их выращивание более снисходительно к поддерживающим линиям и условиям окружающей среды. Кроме того, трансгены присутствуют только в поддерживающих линиях, поэтому гибридные растения могут извлекать выгоду из гибридной силы без необходимости особого надзора. [19]
Концепция гетерозиса также применяется в производстве коммерческого скота . У крупного рогатого скота скрещивание черного ангуса и герефорда дает помесь, известную как « черный лысый ». У свиней «голубые задницы» получаются путем скрещивания гемпшира и йоркшира. Другие, более экзотические гибриды (два разных вида, поэтому генетически более непохожие), такие как « бифало », которые являются гибридами крупного рогатого скота и бизона, также используются для специализированных рынков.
В птицеводстве гены , сцепленные с полом, использовались для создания гибридов, в которых самцов и самок можно сортировать в возрасте одного дня по цвету. Конкретные гены, используемые для этого, — это гены полосатости и роста перьев крыльев. Скрещивания такого рода создают то, что продается как Black Sex-links, Red Sex-links и различные другие скрещивания, которые известны под торговыми наименованиями.
Коммерческие бройлеры производятся путем скрещивания различных линий White Rocks и White Cornish, Cornish обеспечивает крупный костяк, а Rocks обеспечивает быстрый темп прироста. Полученная гибридная энергия позволяет производить однородную птицу с товарным весом тушки в возрасте 6–9 недель.
Аналогичным образом, гибриды между различными породами белых леггорнов используются для получения несушек, которые обеспечивают большую часть белых яиц , продаваемых в Соединенных Штатах.
В 2013 году исследование показало, что собаки смешанных пород живут в среднем на 1,2 года дольше, чем чистопородные. [21]
Джон Скотт и Джон Л. Фуллер провели детальное исследование чистокровных кокер-спаниелей, чистокровных басенджи и гибридов между ними. [22] Они обнаружили, что гибриды бегали быстрее, чем любой из родителей, возможно, из-за гетерозиса. Другие характеристики, такие как базальная частота сердечных сокращений, не показали никакого гетерозиса — базальная частота сердечных сокращений собаки была близка к среднему значению ее родителей — возможно, из-за аддитивного эффекта нескольких генов. [23]
Иногда люди, работающие над программой разведения собак, не находят полезного гетерозиса. [24]
При всем при этом исследования не дают окончательных доказательств гибридной силы у собак. Это во многом связано с неизвестным наследием большинства используемых собак смешанной породы. Результаты сильно различаются, некоторые исследования показывают пользу, а другие обнаруживают, что собаки смешанной породы более склонны к генетическим заболеваниям. [25] [26] [27]
В 2014 году исследование, проведенное Центром интегративной экологии при Университете Дикина в Джилонге, штат Виктория, пришло к выводу, что внутривидовые гибриды между подвидами Platycercus elegans flaveolus и P. e. elegans малиновой розеллы ( P. elegans ) с большей вероятностью способны бороться с болезнями, чем их чистые аналоги. [28]
Все люди чрезвычайно генетически похожи друг на друга. [29] [30] [31] Майкл Мингрони предложил гетерозис в форме гибридной силы, связанной с историческим снижением уровня инбридинга, в качестве объяснения эффекта Флинна , устойчивого роста результатов тестов IQ по всему миру в течение 20-го века, [ необходима ссылка ] хотя обзор девяти исследований показал, что нет никаких доказательств, позволяющих предположить, что инбридинг влияет на IQ. [32]
Термин гетерозис часто вызывает путаницу и даже споры, особенно в селективном разведении домашних животных , поскольку иногда (неверно) утверждается, что все скрещенные растения и животные «генетически превосходят» своих родителей из-за гетерозиса, [ необходима ссылка ] . Однако с этим утверждением связаны две проблемы:
Примером неоднозначных оценочных суждений, налагаемых на гибриды и гибридную силу, является мул . Хотя мулы почти всегда бесплодны, их ценят за сочетание выносливости и темперамента, которое отличается от темперамента их родителей — лошадей или ослов. Хотя эти качества могут делать их «превосходными» для конкретных целей, используемых людьми, проблема бесплодия подразумевает, что эти животные, скорее всего, вымерли бы без вмешательства людей посредством животноводства , что делает их «низшими» с точки зрения естественного отбора .
Общая эволюционная история ныне живущих людей привела к высокой степени родства среди всех ныне живущих людей, о чем свидетельствует, например, очень низкий индекс фиксации (F ST ) среди ныне живущих человеческих популяций.
{{cite book}}
: |journal=
проигнорировано ( помощь )Массированные усилия по детальному изучению генома человека дали необычайное количество генетических данных. Хотя мы все еще не понимаем молекулярные основы большинства сложных признаков, включая многие распространенные заболевания, теперь у нас есть более четкое представление о степени генетического сходства между людьми и другими видами приматов. Мы также знаем, что люди генетически очень близки друг к другу, на самом деле больше, чем любые другие приматы, что большая часть нашего генетического разнообразия объясняется индивидуальными различиями внутри популяций, и что только небольшая часть генетической дисперсии видов приходится на популяции и их географические группы.
Большинство исследований популяционной генетики человека начинаются со ссылки на основополагающую статью Ричарда Левонтина 1972 года, носящую название этого подраздела [29]. Учитывая центральную роль, которую эта работа сыграла в нашей области, мы начнем с ее краткого обсуждения и вернемся к ее выводам на протяжении всей главы. ... Ключевым выводом статьи является то, что 85,4% от общего числа наблюдаемых генетических вариаций произошло внутри каждой группы. То есть, он сообщил, что подавляющее большинство генетических различий обнаружено внутри популяций, а не между ними. ... Его открытие было воспроизведено в исследовании за исследованием вплоть до настоящего времени: два случайных человека из любой одной группы (которая может быть континентом или даже местной популяцией) почти так же различны, как любые два случайных человека из всего мира