stringtranslate.com

Комплексное координатное пространство

В математике n -мерное комплексное координатное пространство (или комплексное n -пространство ) представляет собой множество всех упорядоченных n -кортежей комплексных чисел , также известных как комплексные векторы . Пространство обозначается , и является n -кратным декартовым произведением комплексной прямой на саму себя. Символически, или Переменные являются (комплексными) координатами на комплексном n -пространстве. Особый случай , называемый комплексной координатной плоскостью , не следует путать с комплексной плоскостью , графическим представлением комплексной прямой.

Комплексное координатное пространство — это векторное пространство над комплексными числами с покомпонентным сложением и скалярным умножением . Действительная и мнимая части координат устанавливают биекцию с 2 n -мерным действительным координатным пространством , . Со стандартной евклидовой топологией — это топологическое векторное пространство над комплексными числами.

Функция на открытом подмножестве комплексного n -пространства голоморфна, если она голоморфна по каждой комплексной координате в отдельности. Несколько комплексных переменных - это изучение таких голоморфных функций по n переменным. В более общем смысле, комплексное n -пространство является целевым пространством для голоморфных систем координат на комплексных многообразиях .

Смотрите также

Ссылки