stringtranslate.com

Гаплогруппа R1a

Карта, показывающая частоту гаплогруппы R1a в Европе

Гаплогруппа R1a , или гаплогруппа R-M420 , — это гаплогруппа ДНК Y-хромосомы человека , которая распространена в большом регионе в Евразии , простираясь от Скандинавии и Центральной Европы до Центральной Азии , южной Сибири и Южной Азии . [3] [2]

В то время как одно генетическое исследование показывает, что R1a возник 25 000 [2] лет назад, его субклад M417 (R1a1a1) диверсифицировался около 5800 лет назад. [4] Место происхождения субклада играет роль в дебатах о происхождении протоиндоевропейцев .

Мутация SNP R-M420 была обнаружена после R-M17 (R1a1a), что привело к реорганизации генеалогической линии, в частности, к созданию новой парагруппы (обозначенной R-M420*) для относительно редких генеалогических линий, которые не входят в ветвь R-SRY10831.2 (R1a1), ведущую к R-M17.

Происхождение

Происхождение R1a

Генетическая дивергенция R1a (M420) предположительно произошла 25 000 [2] лет назад, что является временем последнего ледникового максимума . Исследование 2014 года Питера А. Андерхилла и др., в котором участвовали 16 244 человека из более чем 126 популяций со всей Евразии, пришло к выводу, что существуют «убедительные доводы в пользу того, что Ближний Восток, возможно, около современного Ирана, является географическим источником hg R1a». [2] Древние записи ДНК показали первый R1a во время мезолита у восточных охотников-собирателей (из Восточной Европы, около 13 000 лет назад), [5] [6] и самый ранний случай R* среди древних северных евразийцев верхнего палеолита , [7] от которых восточные охотники-собиратели в основном ведут свое происхождение. [8]

Диверсификация R1a1a1 (M417) и древние миграции

Происхождение R1a (Underhill 2009; [3] Происхождение R1a1a (Pamjav et al. 2012); возможная миграция R1a к побережью Балтийского моря; и самая старая экспансия R1a1a и самая высокая частота (Underhill et al. 2014)

Согласно Андерхиллу и др. (2014), нижестоящий субклад R1a-M417 разделился на Z282 и Z93 около 5800 лет назад «вблизи Ирана и Восточной Турции». [4] [примечание 1] Несмотря на то, что R1a встречается как гаплогруппа Y-хромосомы среди носителей различных языков, таких как славянские и индоиранские , вопрос о происхождении R1a1a имеет отношение к продолжающимся дебатам относительно прародины протоиндоевропейских людей , а также может иметь отношение к происхождению цивилизации долины Инда . R1a показывает сильную корреляцию с индоевропейскими языками Южной и Западной Азии , Центральной и Восточной Европы и Скандинавии [10] [3], будучи наиболее распространенным в Восточной Европе , Центральной Азии и Южной Азии . В Европе Z282 особенно распространен, в то время как в Азии доминирует Z93. Связь между Y-ДНК R-M17 и распространением индоевропейских языков была впервые отмечена Т. Зерьялом и коллегами в 1999 году. [11]

Индоевропейские отношения

Предполагаемое степное распространение R1a1a

Семино и др. (2000) предположили украинское происхождение и постледниковое распространение гаплогруппы R1a1 во время позднего ледникового максимума , впоследствии усиленное экспансией курганной культуры в Европу и на восток. [12] Спенсер Уэллс предполагает центральноазиатское происхождение, предполагая, что распределение и возраст R1a1 указывают на древнюю миграцию, соответствующую распространению курганного народа при его экспансии из евразийской степи . [13] Согласно Памжаву и др. (2012), R1a1a диверсифицировалась в евразийских степях или на Ближнем Востоке и Кавказе:

Внутренняя и Центральная Азия являются зоной перекрытия линий R1a1-Z280 и R1a1-Z93, [что] подразумевает, что ранняя зона дифференциации R1a1-M198 предположительно произошла где-то в пределах евразийских степей или региона Ближнего Востока и Кавказа, поскольку они лежат между Южной Азией и Центральной и Восточной Европой. [14]

Три генетических исследования в 2015 году подтвердили теорию курганов Гимбутас относительно индоевропейской прародины . Согласно этим исследованиям, гаплогруппы R1b и R1a, в настоящее время наиболее распространенные в Европе (R1a также распространена в Южной Азии), могли распространиться из степей Понтийского моря и Каспия вместе с индоевропейскими языками; они также обнаружили аутосомный компонент, присутствующий у современных европейцев, который отсутствовал у неолитических европейцев, который мог быть введен с отцовскими линиями R1b и R1a, а также с индоевропейскими языками. [15] [16] [17]

Сильва и др. (2017) отметили, что R1a в Южной Азии, скорее всего, «распространился из одного центральноазиатского источника, похоже, что на Индийском субконтиненте есть по крайней мере три, а возможно и больше кладов-основателей R1a , что согласуется с несколькими волнами прибытия». [18] По словам Мартина П. Ричардса, соавтора Сильвы и др. (2017), распространенность R1a в Индии была «весомым доказательством существенной миграции в бронзовом веке из Центральной Азии, которая, скорее всего, привела в Индию носителей индоевропейских языков». [19] [примечание 2]

Возможное происхождение от ямной или шнуровой керамики
Европейский средний неолитический период. Культура гребенчатой ​​керамики ок. 4200 – ок. 2000 до н.э.
Культура шнуровой керамики (ок. 2900 – ок. 2350 до н.э.)

Дэвид Энтони считает ямную культуру прародиной индоевропейцев . [20] [21] Согласно Хааку и др. (2015), массовая миграция из ямной культуры на север произошла около 2500 г. до н. э., составив 75% генетического происхождения культуры шнуровой керамики , отмечая, что R1a и R1b могли «распространиться в Европу с Востока после 3000 г. до н. э.». [22] Тем не менее, все их семь образцов ямной культуры принадлежали к субкладу R1b-M269 , [22] но ни один R1a1a не был обнаружен в их образцах ямной керамики. Это поднимает вопрос, откуда взялся R1a1a в культуре шнуровой керамики, если он не был из ямной культуры. [23]

По мнению Марка Хабера, отсутствие гаплогруппы R1a-M458 в Афганистане не подтверждает понтийско-каспийское степное происхождение линий R1a в современных популяциях Центральной Азии. [24]

По словам Льва Клейна , отсутствие гаплогруппы R1a в останках ямной культуры (несмотря на ее присутствие в энеолитических популяциях самарцев и восточных охотников-собирателей ) делает маловероятным, что европейцы унаследовали гаплогруппу R1a от ямной культуры. [25]

Археолог Барри Канлифф заявил, что отсутствие гаплогруппы R1a в образцах ямной культуры является основным недостатком предположения Хаака о том, что R1a имеет ямное происхождение. [26]

Семенов и Булат (2016) утверждают, что R1a1a имеет ямное происхождение в культуре шнуровой керамики, отмечая, что несколько публикаций указывают на присутствие R1a1 в культуре гребенчатой ​​керамики . [27] [примечание 3]

Предполагаемое южноазиатское происхождение

Kivisild et al. (2003) предложили либо Южную, либо Западную Азию , [28] [примечание 4], в то время как Mirabal et al. (2009) видят поддержку как Южной, так и Центральной Азии. [10] Sengupta et al. (2006) предложили индийское происхождение. [29] Thanseem et al. (2006) предложили либо Южную, либо Центральную Азию. [30] Sahoo et al. (2006) предложили либо Южную, либо Западную Азию. [31] Thangaraj et al. (2010) также предложили южноазиатское происхождение. [32] Sharma et al. (2009) выдвигают теорию о существовании R1a в Индии более 18 000 лет назад, возможно, 44 000 лет назад. [1]

Ряд исследований, проведенных с 2006 по 2010 год, пришли к выводу, что популяции Южной Азии имеют самое высокое разнообразие STR в пределах R1a1a, [33] [34] [10] [3] [1] [35] и последующих более старых датировок TMRCA . [примечание 5] R1a1a присутствует как среди высших ( брахманских ), так и среди низших каст, и хотя частота выше среди каст брахманов, самые старые датировки TMRCA гаплогруппы R1a встречаются в племени Сахария , зарегистрированной касте региона Бунделькханд в Центральной Индии . [1] [35]

На основании этих результатов некоторые исследователи пришли к выводу, что R1a1a возникла в Южной Азии, [34] [1] [примечание 6], исключая более недавний, но незначительный генетический приток от индоевропейских мигрантов в северо-западных регионах, таких как Афганистан, Белуджистан, Пенджаб и Кашмир. [34] [33] [3] [примечание 7]

Вывод о том, что R1a возник в Индии, был подвергнут сомнению более поздними исследованиями, [18] [37] [примечание 8], которые доказали, что R1a прибыл в Индию с несколькими волнами миграции. [18] [38]

Предполагаемое происхождение из Закавказья и Западной Азии и возможное влияние на цивилизацию долины Инда

Хаак и др. (2015) обнаружили, что часть предков ямной культуры происходит с Ближнего Востока, и что неолитические методы, вероятно, пришли в ямную культуру с Балкан . [примечание 9] Культура Рёссена (4600–4300 гг. до н.э.), которая находилась в Германии и предшествовала культуре шнуровой керамики, старый субклад R1a, а именно L664, все еще может быть обнаружена. [примечание 10]

Часть генетического наследия Южной Азии происходит от западно-евразийских популяций, и некоторые исследователи предполагают, что Z93 мог попасть в Индию через Иран [40] и распространиться там во времена цивилизации долины Инда . [2] [41]

Маскаренхас и др. (2015) предположили, что корни Z93 лежат в Западной Азии, и предположили, что «Z93 и L342.2 расширились в юго-восточном направлении из Закавказья в Южную Азию », [40] отметив, что такое расширение совместимо с «археологическими записями об экспансии на восток популяций Западной Азии в 4-м тысячелетии до н. э., достигшей кульминации в так называемых миграциях Куры-Аракса в период после Урука IV ». [40] Тем не менее, Лазаридис отметил, что образец I1635 Лазаридиса и др. (2016), их армянский образец Куры-Аракса, нес Y-гаплогруппу R1 b 1-M415(xM269) [примечание 11] (также называемую R1b1a1b-CTS3187). [42] [ ненадежный источник? ]

Согласно Андерхиллу и др. (2014), диверсификация Z93 и «ранняя урбанизация в долине Инда... произошла [5600 лет назад], и географическое распределение R1a-M780 (рисунок 3d [примечание 12] ) может отражать это». [2] [примечание 13] Позник и др. (2016) отмечают, что «резкое расширение» произошло в пределах R1a-Z93 примерно 4500–4000 лет назад, что «на несколько столетий раньше краха цивилизации долины Инда». [41] [примечание 14]

Однако, по данным Нарасимхана и др. (2018), степные скотоводы являются вероятным источником R1a в Индии. [44] [примечание 15]

Филогения

Генеалогическое древо R1a теперь имеет три основных уровня ветвления, с наибольшим числом определенных субкладов в доминирующей и наиболее известной ветви R1a1a (которая будет встречаться под различными названиями, такими как «R1a1» в относительно недавней, но не последней литературе).

Топология

Топология R1a выглядит следующим образом (коды [в скобках] не-isogg коды): [9] [45] [ требуется проверка ] [46] [2] [47] Татьяна и др. (2014) «быстрый процесс диверсификации K-M526 , вероятно, произошел в Юго-Восточной Азии с последующим расширением на запад предков гаплогрупп R и Q ». [48]

Гаплогруппа R

Р-М173 (Р1)

R1a отличается несколькими уникальными маркерами, включая мутацию M420. Это субклад гаплогруппы R-M173 (ранее называвшейся R1). R1a имеет сестринские субклады гаплогруппы R1b -M343 и парагруппу R-M173*.

Р-М420 (Р1а)

R-M420, определяемая мутацией M420, имеет две ветви: R-SRY1532.2, определяемая мутацией SRY1532.2, которая составляет подавляющее большинство; и R-M420*, парагруппа , определяемая как M420-положительная, но SRY1532.2-отрицательная. (В схеме 2002 года это SRY1532.2-отрицательное меньшинство было частью относительно редкой группы, классифицированной как парагруппа R1*.) Мутации, которые считаются эквивалентными M420, включают M449, M511, M513, L62 и L63. [3] [51]

Только отдельные образцы новой парагруппы R-M420* были обнаружены Underhill 2009, в основном на Ближнем Востоке и Кавказе : 1/121 Оманцы , 2/150 Иранцы , 1/164 в Объединенных Арабских Эмиратах и ​​3/612 в Турции . Тестирование еще 7224 самцов в 73 других евразийских популяциях не показало никаких признаков этой категории. [3]

Эта парагруппа теперь известна как R1a2 (R-YP4141). Затем она имеет две ветви R1a2a (R-YP5018) и R1a2b (R-YP4132).

R-SRY1532.2 (R1a1)

R1a1 определяется SRY1532.2 или SRY10831.2 (всегда включает SRY10831.2, M448, L122, M459 и M516 [3] [52] ). В этом семействе линий доминируют M17 и M198. Напротив, парагруппа R-SRY1532.2* не имеет ни маркеров M17, ни маркеров M198.

Парагруппа R-SRY1532.2*, по-видимому, менее редка, чем R1*, но все еще относительно необычна, хотя она была проверена в более чем одном исследовании. Underhill et al. (2009) сообщили о 1/51 в Норвегии , 3/305 в Швеции , 1/57 греко-македонцев , 1/150 иранцев, 2/734 этнических армян и 1/141 кабардинцев . [3] Sahoo et al. (2006) сообщили о R-SRY1532.2* для 1/15 образцов раджпутов Химачал-Прадеш . [34]

Р-М17/М198 (Р1а1а)

Следующие SNP связаны с R1a1a:

Р-М417 (Р1а1а1)

R1a1a1 (R-M417) является наиболее широко распространенным субкладом, в двух вариациях, которые встречаются соответственно в Европе (R1a1a1b1 (R-Z282) ([R1a1a1a*] (R-Z282) (Underhill 2014) [2] ) и Центральной и Южной Азии (R1a1a1b2 (R-Z93) ([R1a1a2*] (R-Z93) Underhill 2014) [2] ).

R-Z282 (R1a1a1b1a) (Восточная Европа)

Этот большой субклад, по-видимому, охватывает большую часть R1a1a, обнаруженных в Европе. [14]

Р-М458 (Р1а1а1б1а1)
Частотное распределение R-M458

R-M458 — это преимущественно славянский SNP, характеризующийся собственной мутацией и впервые названный кластером N. Андерхилл и др. (2009) обнаружили, что он присутствует в современных европейских популяциях примерно между водосбором Рейна и Уральскими горами , и проследили его до «эффекта основателя, который ... попадает в ранний голоценовый период, 7,9±2,6 тыс. лет назад». (Скорости Животовского, завышены в 3 раза) [3] M458 был обнаружен в одном скелете из могильного поля 14-го века в Узедоме , Мекленбург-Передняя Померания, Германия. [54] В статье Андерхилла и др. (2009) также сообщается об удивительно высокой частоте M458 в некоторых популяциях Северного Кавказа (18% среди ак-ногайцев , [55] 7,8% среди кара-ногайцев и 3,4% среди абазин ). [56]

Р-Л260 (Р1а1а1б1а1а)

R1a1a1b1a1a (R-L260), обычно называемая западнославянской или польской , является субкладом более крупной родительской группы R-M458 и впервые была идентифицирована как кластер STR Павловским и др. в 2002 году. В 2010 году было подтверждено, что это гаплогруппа, идентифицированная по ее собственной мутации (SNP). [57] По-видимому, она составляет около 8% польских мужчин, что делает ее наиболее распространенной субкладой в Польше. За пределами Польши она встречается реже. [58] Помимо Польши, она в основном встречается в Чешской Республике и Словакии и считается «явно западнославянской». Предполагается, что предок-основатель R-L260 жил между 2000 и 3000 лет назад, то есть во время железного века , со значительным расширением популяции менее 1500 лет назад. [59]

Р-М334

R-M334 ([R1a1a1g1], [47] субклад [R1a1a1g] (M458) [47] cq R1a1a1b1a1 (M458) [46] ) был обнаружен Андерхиллом и др. (2009) только у одного эстонского мужчины и может определять совсем недавно основанный и небольшой клад. [3]

R1a1a1b1a2 (S466/Z280, S204/Z91)
R1a1a1b1a2b3* (Кластер K Гвоздза)

R1a1a1b1a2b3* (M417+, Z645+, Z283+, Z282+, Z280+, CTS1211+, CTS3402, Y33+, CTS3318+, Y2613+) (кластер K Гвоздза) [45] [ требуется проверка ] — это группа на основе STR, которая является R-M17(xM458). Этот кластер распространен в Польше, но не является исключительным для Польши. [59]

R1a1a1b1a2b3a (R-L365)

R1a1a1b1a2b3a (R-L365) [46] раньше назывался кластером G. [ необходима цитата ]

R1a1a1b2 (R-Z93) (Азия)

Этот большой субклад, по-видимому, охватывает большую часть R1a1a, обнаруженных в Азии, и связан с индоевропейскими миграциями (включая скифов , индоарийские миграции и т. д.) [14] .

Географическое распространение R1a1a

Распределение R1a (фиолетовый) и R1b (красный)

Доисторический

В мезолитической Европе R1a характерна для восточных охотников-собирателей (EHG). [62] Было обнаружено, что мужчина EHG культуры Веретье, похороненный в Песчанице около озера Лача в Архангельской области , Россия, около 10 700 г. до н. э., является носителем отцовской гаплогруппы R1a5-YP1301 и материнской гаплогруппы U4a . [63] [64] [62] Было обнаружено , что мужчина по имени PES001 из Песчаницы на северо-западе России является носителем R1a5 и датируется как минимум 10 600 лет назад. [5] Другие примеры включают мужчин Минино II (V) и Минино II (I/1), причем первый имел R1a1, а второй R1a соответственно, причем первый имел возраст 10 600 лет, а второй — не менее 10 400 лет соответственно, оба из Минино на северо-западе России. [65] Мезолитический мужчина из Карелии, живший примерно в 8800–7950 гг. до н. э., был признан носителем гаплогруппы R1a. [66] Мезолитический мужчина , захороненный в Дериивке примерно в 7000–6700 гг. до н. э., имел отцовскую гаплогруппу R1a и материнскую U5a2a . [17] Другой мужчина из Карелии примерно в 5500–5000 гг. до н. э., считавшийся EHG, имел гаплогруппу R1a. [15] Мужчина из культуры гребенчатой ​​керамики в Кудрукюле примерно в 5900 до н.э. - 3800 до н.э. был определен как носитель R1a и материнского U2e1 . [67] По словам археолога Дэвида Энтони, отцовский R1a-Z93 был найден на реке Оскол около уже не существующего колхоза «Александрия», Украина около 4000 г. до н.э., «самый ранний известный образец, показывающий генетическую адаптацию к устойчивости лактазы (13910-T)». [68] R1a был обнаружен в культуре шнуровой керамики , [69] [70] в которой он преобладает. [71] Обследованные мужчины культуры Фатьяново бронзового века полностью принадлежат к R1a, в частности к субкладу R1a-Z93. [62] [63] [72]

Гаплогруппа R1a позже была обнаружена в древних окаменелостях, связанных с культурой полей погребальных урн ; [73] а также в захоронениях останков синташтинской , [ 16] андроновской , [74] пазырыкской , [75] тагарской , [74] таштыкской , [74] и срубной культур, жителей древнего Танаиса , [76] в мумиях Тарима , [77] и аристократии хунну . [ 78 ] Останки скелета отца и его двух сыновей из археологического памятника, обнаруженного в 2005 году недалеко от Эулау (в Саксонии-Анхальт , Германия ) и датируемого примерно 2600 годом до н. э., дали положительный результат на маркер Y-SNP SRY10831.2. Номер Ysearch для останков Эулау - 2C46S. Таким образом, эта предковая клада присутствовала в Европе по крайней мере 4600 лет назад, в ассоциации с одним из мест широко распространенной культуры шнуровой керамики . [69]

Европа

В Европе подгруппа R1a1a в первую очередь характерна для балто-славянских популяций, за двумя исключениями: южные славяне и северные русские. [ 79] Самая высокая частота R1a1a в Европе наблюдается у лужичан (63%), [80] западнославянской этнической группы, за которой следуют венгры (60%). [12] Другие группы со значительным R1a1a, варьирующимся от 27% до 58%, включают чехов , поляков , словенцев , словаков , молдаван , белорусов , русинов , украинцев и русских . [79] [80] [12] Частота R1a снижается в северо-восточных русских популяциях до 20%–30%, в отличие от центрально-южной России, где ее частота вдвое выше. В Прибалтике частоты R1a1a снижаются от Литвы (45%) до Эстонии (около 30%). [81] [82] [83] [12] [84]

Также значительное присутствие наблюдается у народов германского происхождения, с самыми высокими показателями в Норвегии , Швеции и Исландии , где от 20 до 30% мужчин имеют R1a1a. [85] [86] Викинги и норманны , возможно, также перенесли линию R1a1a дальше, составляя по крайней мере часть небольшого присутствия на Британских островах , Канарских островах и Сицилии . [87] [88] Гаплогруппа R1a1a в среднем составляет от 20 до 30% у немцев , с пиком в Ростоке в 31,3%. [89] R1a1a встречается с очень низкой частотой среди голландцев (3,7%) [12] и практически отсутствует у датчан . [90]

В Южной Европе R1a1a встречается нечасто, но значительные уровни были обнаружены в таких местах, как долина реки Пас на севере Испании , районы Венеции и Калабрии в Италии . [91] [ необходим лучший источник ] На Балканах наблюдается значительная вариация между областями со значительными уровнями R1a1a, например, 36–39% в Словении , [92] 27–34% в Хорватии , [82] [93] [94] [95] [96] и более 30% в греческой Македонии , но менее 10% в Албании , Косово и частях Греции к югу от ущелья Олимп. [97] [83] [12]

R1a фактически состоит только из субклада Z284 в Скандинавии . В Словении основным субкладом является Z282 (Z280 и M458), хотя субклад Z284 был обнаружен в одном образце словенца. Существует незначительное представительство Z93 в Турции , 12,1% [60] [2] Западные славяне и венгры характеризуются высокой частотой субклада M458 и низкой Z92, субклада Z280. Сотни словенских образцов и чехи не имеют субклада Z92 Z280, в то время как поляки, словаки, хорваты и венгры показывают только очень низкую частоту Z92. [ 2] Балты , восточные славяне , сербы , македонцы , болгары и румыны демонстрируют соотношение Z280>M458 и высокую, вплоть до преобладающей, долю Z92. [2] Балты и восточные славяне имеют одни и те же субклады и схожие частоты в более подробной филогении субкладов. [98] [99] Российский генетик Олег Балановский предположил, что в генетике восточных и западных славянских популяций преобладает ассимилированный дославянский субстрат. По его мнению, общая генетическая структура, отличающая восточных славян и балтов от других популяций, может предполагать объяснение того, что дославянский субстрат восточных и западных славян в основном состоял из носителей балтийских языков, которые в какой-то момент предшествовали славянам в культурах евразийской степи, согласно археологическим и топонимическим ссылкам. [примечание 16]

Азия

Центральная Азия

Зерджал и др . (2002) обнаружили R1a1a у 64% выборки таджиков Таджикистана и у 63% выборки киргизов Кыргызстана . [ 100]

Хабер и др. (2012) обнаружили R1a1a-M17 в 26,0% (53/204) выборки образцов из Афганистана , включая 60% (3/5) выборки нуристанцев , 51,0% (25/49) выборки пуштунов, 30,4% (17/56) выборки таджиков, 17,6% (3/17) выборки узбеков, 6,7% (4/60) выборки хазарейцев и у единственного исследованного туркмена. [101]

Ди Кристофаро и др. (2013) обнаружили R1a1a-M198/M17 в 56,3% (49/87) пары образцов пуштунов из Афганистана (включая 20/34 или 58,8% образца пуштунов из Баглана и 29/53 или 54,7% образца пуштунов из Кундуза ), 29,1% (37/127) пула образцов узбеков из Афганистана (включая 28/94 или 29,8% образца узбеков из Джаузджана , 8/28 или 28,6% образца узбеков из Сари-Пола и 1/5 или 20% образца узбеков из Балха ), 27,5% (39/142) пула образцов таджиков из Афганистана (включая 22/54 или 40,7% образца таджиков из Балха , 9/35 или 25,7% от выборки таджиков из Тахара , 4/16 или 25,0% от выборки таджиков из Самангана и 4/37 или 10,8% от выборки таджиков из Бадахшана ), 16,2% (12/74) от выборки туркмен из Джаузджана и 9,1% (7/77) от пары выборок хазарейцев из Афганистана (включая 7/69 или 10,1% от выборки хазарейцев из Бамиана и 0/8 или 0% от выборки хазарейцев из Балха ). [102]

Малярчук и др. (2013) обнаружили R1a1-SRY10831.2 у 30,0% (12/40) выборки таджиков из Таджикистана. [103]

Аширбеков и др. (2017) обнаружили R1a-M198 в 6,03% (78/1294) выборки казахов из Казахстана . R1a-M198 наблюдался с частотой выше средней в выборках исследования следующих казахских племен: 13/41 = 31,7% выборки суан, 8/29 = 27,6% выборки ошакты, 6/30 = 20,0% образца Qozha, 4/29 = 13,8% образца Qypshaq, 1/8 = 12,5% образца Tore, 9/86 = 10,5% образца Jetyru, 4/50 = 8,0% образец Аргын, 1/13 = 7,7% образца Шанышкылы, 8/122 = 6,6% образца Алимулы, 3/46 = 6,5% образца Албан. R1a-M198 также наблюдался у 5/42 = 11,9% выборки казахов неуказанной племенной принадлежности. [104]

Южная Азия

В Южной Азии R1a1a часто наблюдался в ряде демографических групп. [34] [33]

В Индии высокие частоты этой гаплогруппы наблюдаются у брахманов Западной Бенгалии (72%) на востоке [33] , Бханушали (67%) и Гуджарат Лохана (60%) на западе [3] , Уттар-Прадешских брахманов (68%), Пенджаб/Харьяна Кхатри (67%) и Ахирс (63%) на севере [1] [33] [3] и Карнатака Медары (39%) на юге [105] . Она также была обнаружена у нескольких южноиндийских дравидийских адиваси , включая Ченчу (26%) из Андхра-Прадеша и Кота из Андхра-Прадеша (22,58%) [106] и Каллар из Тамил Наду, что позволяет предположить, что R1a1a широко распространена среди племенных южных индийцев [28] .

Помимо этого, исследования показывают высокий процент в регионально разнообразных группах, таких как манипури (50%) [3] на крайнем северо-востоке и среди пенджабцев (47%) [28] на крайнем северо-западе.

В Пакистане он обнаружен у 71% племени моханна в провинции Синд на юге и у 46% среди балти Гилгит -Балтистана на севере. [3] Среди сингалов Шри -Ланки 23% оказались R1a1a (R-SRY1532) положительными. [107] У индуистов округа Читван в регионе Терай в Непале он обнаружен у 69%. [108]

Восточная Азия

Частота R1a1a сравнительно низкая среди некоторых тюркоязычных групп, таких как якуты , однако ее уровень выше (от 19 до 28%) в некоторых тюркоязычных или монголоязычных группах северо-западного Китая , таких как бонан , дунсян , салары и уйгуры . [13] [109] [110]

Китайская статья, опубликованная в 2018 году, обнаружила R1a-Z94 у 38,5% (15/39) выборки кериялик-уйгуров из деревни Дарья Бойи / Дарья Бойе, уезд Ютянь , Синьцзян (于田县达里雅布依乡), R1a-Z93. в 28,9% (22/76) выборки уйгуров Долан из поселка Хорикол, уезда Ават , Синьцзян (阿瓦提县乌鲁却勒镇), а R1a-Z93 - в 6,3% (4/64) выборки Лоплик-уйгуры из деревни Каркуга/Карчуга уезда Юли , Синьцзян (尉犁县喀尔曲尕乡). R1a(xZ93) наблюдался только у одного из 76 доланских уйгуров. [111] Обратите внимание, что деревня Дарья Бойи расположена в отдаленном оазисе, образованном рекой Керия в пустыне Такла-Макан . Исследование Y-ДНК, проведенное в 2011 году, обнаружило Y-хромосому R1a1 у 10% выборки южных хуэйцев из Юньнани, у 1,6% выборки тибетцев из Тибета ( Тибетский автономный район ), у 1,6% выборки сибеев из Синьцзяна. , 3,2% выборки северных хуэй из Нинся , 9,4% выборки хазаков ( казахов ) из Синьцзяна, и показатели 24,0%, 22,2%, 35,2%, 29,2% в 4 различных выборках уйгуров из Синьцзяна, 9,1% в выборке монголов из Внутренней Монголии . Другой субклад R1 был также обнаружен у 1,5% выборки северных хуэй из Нинся. [112] в том же исследовании не было обнаружено ни одного случая R1a в 6 образцах китайцев хань в Юньнани , 1 образце хань в Гуанси , 5 образцах хань в Гуйчжоу , 2 образцах хань в Гуандуне , 2 образцах хань в Фуцзяне , 2 образца Хань в Чжэцзяне , 1 образец Хань в Шанхае , 1 образец Хань в Цзянси , 2 образца Хань в Хунани , 1 образец Хань в Хубэе , 2 образца Хань в Сычуани , 1 образец Хань в Чунцин , 3 образца хань в Шаньдуне , 5 образцов хань в Ганьсу , 3 образца хань в Цзилине и 2 образца хань в Хэйлунцзяне . [113] 40% саларов, 45,2% таджиков Синьцзяна , 54,3% дунсян, 60,6% татар и 68,9% киргизовв Синьцзяне на северо-западе Китая, в одном образце, протестированном, была R1a1-M17. Баоань (Бонан) имел наибольшее разнообразие гаплогрупп 0,8946±0,0305, в то время как другие этнические меньшинства на северо-западе Китая имели высокое разнообразие гаплогрупп, как и жители Центральной Азии, 0,7602±0,0546. [114]

В Восточной Сибири R1a1a встречается среди некоторых коренных этнических групп, включая камчатцев и чукотцев , и достигает пика среди ительманов — 22% [115] .

Юго-Восточная Азия

Y-гаплогруппы R1a-M420 и R2-M479 встречаются у народов Эде (8,3% и 4,2%) и Гиараи (3,7% и 3,7%) во Вьетнаме . У Чамов также есть гаплогруппы R-M17 (13,6%) и R-M124 (3,4%).

R1a1a1b2a2a (R-Z2123) и R1a1 встречаются у кхмеров из Таиланда (3,4%) и Камбоджи (7,2%) соответственно. Гаплогруппа R1a1a1b2a1b (R-Y6) также встречается у народов куй (5%).

По данным Чангмая и др. (2022), эти частоты гаплогрупп происходят от южноазиатов, которые оставили культурное и генетическое наследие в Юго-Восточной Азии с первого тысячелетия нашей эры. [116]

Западная Азия

R1a1a был обнаружен в различных формах в большинстве частей Западной Азии , в самых разных концентрациях, от почти полного отсутствия в таких областях, как Иордания , до гораздо более высоких уровней в частях Кувейта и Ирана . Племя бедуинов Шимар ( Шаммар ) в Кувейте показывает самую высокую частоту на Ближнем Востоке - 43%. [117] [118] [119]

Уэллс 2001 г. отметил, что в западной части страны иранцы демонстрируют низкие уровни R1a1a, в то время как мужчины восточных частей Ирана несут до 35% R1a1a. Насидзе и др. 2004 г. обнаружили R1a1a примерно у 20% иранских мужчин из городов Тегеран и Исфахан . Регейро 2006 г. в исследовании Ирана отметил гораздо более высокие частоты на юге, чем на севере.

Более новое исследование обнаружило 20,3% R-M17* среди курдских образцов, которые были взяты в провинции Курдистан на западе Ирана, 19% среди азербайджанцев в Западном Азербайджане , 9,7% среди мазендерани в Северном Иране в провинции Мазендеран , 9,4% среди гиляков в провинции Гилян , 12,8% среди персов и 17,6% среди зороастрийцев в Йезде , 18,2% среди персов в Исфахане , 20,3% среди персов в Хорасане , 16,7% афроиранцев, 18,4% кешми «Гешми», 21,4% среди персидских бандари в Хормозгане и 25% среди белуджей в провинциях Систан и Белуджистан . [120]

Ди Кристофаро и др. (2013) обнаружили гаплогруппу R1a в 9,68% (18/186) выборки образцов из Ирана, хотя с большой дисперсией в диапазоне от 0% (0/18) в выборке иранцев из Тегерана до 25% (5/20) в выборке иранцев из Хорасана и 27% (3/11) в выборке иранцев неизвестного происхождения. Все иранские индивидуумы R1a несли мутации M198 и M17, за исключением одного индивидуума в выборке иранцев из Гиляна ( n = 27), который, как сообщалось, принадлежал к R1a-SRY1532.2(xM198, M17). [102]

Малярчук и др. (2013) обнаружили R1a1-SRY10831.2 у 20,8% (16/77) выборки персов, собранной в провинциях Хорасан и Керман на востоке Ирана, но они не нашли ни одного представителя этой гаплогруппы в выборке из 25 курдов , собранной в провинции Керманшах на западе Ирана. [103]

С другой стороны, дальше к северу от этих западно-азиатских регионов уровни R1a1a начинают увеличиваться на Кавказе , опять же неравномерно. Несколько изученных популяций не показали никаких признаков R1a1a, в то время как самые высокие уровни, обнаруженные до сих пор в регионе, по-видимому, принадлежат носителям карачаево -балкарского языка , среди которых около четверти мужчин, протестированных до сих пор, относятся к гаплогруппе R1a1a. [3]

Историческое наименование R1a

Историческая система наименований, обычно используемая для R1a, была непоследовательной в различных опубликованных источниках, поскольку она часто менялась; это требует некоторого пояснения.

В 2002 году Консорциум Y-хромосомы (YCC) предложил новую систему наименований для гаплогрупп (YCC 2002), которая теперь стала стандартной. В этой системе названия в формате «R1» и «R1a» являются « филогенетическими » названиями, направленными на обозначение позиций в генеалогическом древе. Названия мутаций SNP также могут использоваться для наименования кладов или гаплогрупп. Например, поскольку M173 в настоящее время является определяющей мутацией R1, R1 также является R-M173, «мутационным» названием клада. Когда обнаруживается новое разветвление в дереве, некоторые филогенетические названия изменятся, но по определению все мутационные названия останутся прежними.

Широко распространенная гаплогруппа, определяемая мутацией M17, была известна под разными названиями, например, «Eu19», как это использовалось в (Semino et al. 2000) в старых системах наименований. Предложение YCC 2002 года присвоило название R1a гаплогруппе, определяемой мутацией SRY1532.2. Оно включало Eu19 (т. е. R-M17) в качестве субклада, поэтому Eu19 была названа R1a1. Обратите внимание, что SRY1532.2 также известен как SRY10831.2 [ необходима ссылка ] Открытие M420 в 2009 году привело к переназначению этих филогенетических названий. (Underhill et al. 2009 и ISOGG 2012) R1a теперь определяется мутацией M420: в этом обновленном дереве субклад, определенный SRY1532.2, переместился из R1a в R1a1, а Eu19 (R-M17) из R1a1 в R1a1a.

Более поздние обновления, зафиксированные на справочной веб-странице ISOGG, включают ответвления R-M17, включая одно основное ответвление, R-M417.

Смотрите также

Субклады Y-ДНК R-M207

Y-ДНК остовное дерево

Примечания

  1. ^ Согласно Family Tree, [ кто? ] они разделились примерно 5000 лет назад. [9]
  2. ^ См. также: «Расселение населения с сильным гендерным дисбалансом на Индийском субконтиненте (Silva et al. 2017)». Блог Eurogenes . 28 марта 2017 г.[ самостоятельно опубликованный источник? ]
  3. ^ Семенов и Булат (2016) ссылаются на следующие публикации:
    1. Хаак, Вольфганг (2015). «Массовая миграция из степи является источником индоевропейских языков в Европе». Nature . 522 (7555): 207–211. arXiv : 1502.02783 . Bibcode :2015Natur.522..207H. bioRxiv  10.1101/013433 . doi : 10.1038/NATURE14317 . PMC  5048219 . PMID  25731166.
    2. Матисон, Иэн (2015). «Восемь тысяч лет естественного отбора в Европе». bioRxiv  10.1101/016477 .
    3. Чекунова Е.М., Ярцева Н.В., Чекунов М.К., Мазуркевич А.Н. Первые результаты генотипирования аборигенов и костных останков людей археологических памятников Верхнего Подвинья. // Археология озерных поселений IV—II тыс. до н.э.: хронология культур и природно-климатических ритмов. Материалы Международной конференции, посвященной 50-летию изучения свайных поселений Северо-Запада России. Санкт-Петербург, 13–15 ноября 2014 г.
    4. Джонс, скорая помощь; Гонсалес-Фортес, Г; Коннелл, С; Сиска, В; Эрикссон, А; Мартиниано, Р; Маклафлин, РЛ; Гальего Льоренте, М; Кэссиди, LM; Гамба, К; Мешвелиани, Т; Бар-Йосеф, О; Мюллер, В; Белфер-Коэн, А; Мацкевич З.; Джакели, Н; Хайэм, штат Техас; Куррат, М; Лордкипанидзе, Д; Хофрейтер, М; Маника, А; Пинхаси, Р; Брэдли, генеральный директор (2015). «Геномы верхнего палеолита раскрывают глубокие корни современных евразийцев». Нат Коммун . 6 : 8912. Бибкод : 2015NatCo...6.8912J. doi : 10.1038/ncomms9912. PMC  4660371. PMID  26567969 .
  4. ^ Кивисилд и др. (2003): «Гаплогруппа R1a, ранее связанная с предполагаемым индоарийским вторжением, была обнаружена с самой высокой частотой в Пенджабе, но также с относительно высокой частотой (26%) в племени ченчу. Это открытие, вместе с более высоким разнообразием коротких тандемных повторов, связанных с R1a, в Индии и Иране по сравнению с Европой и Центральной Азией, предполагает, что южная и западная Азия могут быть источником этой гаплогруппы». [28]
  5. ^ Сенгупта (2006): «Мы обнаружили, что влияние Центральной Азии на ранее существовавший генофонд было незначительным. Возраст накопленных микросателлитных вариаций в большинстве индийских гаплогрупп превышает 10 000–15 000 лет, что свидетельствует о древности региональной дифференциации. Поэтому наши данные не подтверждают модели, которые ссылаются на выраженный недавний генетический вклад из Центральной Азии для объяснения наблюдаемой генетической вариации в Южной Азии».
  6. ^ Южно-азиатское происхождение:
    * Sahoo et al. (2006): "... следует ожидать наблюдения значительно более низкой генетической изменчивости среди индийских линий Rla. На самом деле, верно обратное: разнообразие гаплотипов STR на фоне R1a в Центральной Азии (а также в Восточной Европе) уже было показано ниже, чем в Индии (6). Скорее, высокая частота R1* и Rla во всех популяциях центральноазиатских европейцев (без R2 и R* в большинстве случаев) более экономно объясняется потоком генов в противоположном направлении, возможно, с ранним эффектом основателя в Южной или Западной Азии. [36]
    * Sharma et al. (2009): "Странное наблюдение самой высокой частоты (до 72,22%) Y-гаплогруппы R1a1* у брахманов намекает на ее присутствие в качестве линии основателя для этой кастовой группы. Кроме того, наблюдение R1a1* в различных племенных группах населения, существование Y-гаплогруппы R1a* у предков и расширенный филогенетический анализ объединенного набора данных 530 индийцев, 224 пакистанцев и 276 жителей Центральной Азии и Евразии, имеющих гаплогруппу R1a1*, подтвердили автохтонное происхождение линии R1a1 в Индии и племенную связь с индийскими брахманами. Однако важно обнаружить новые бинарные маркеры Y-хромосомы для более высокого разрешения R1a1* и подтвердить настоящие выводы.
  7. ^ Хотя Сенгупта (2006) признал, что «[R1a1 и R2] могли на самом деле прибыть в южную Индию из юго-западного азиатского региона-источника несколько раз». Полностью: «Широкое географическое распространение HG R1a1-M17 по всей Евразии и текущее отсутствие информативных подразделений, определенных бинарными маркерами, оставляют неопределенным географическое происхождение HG R1a1-M17. Однако контурная карта дисперсии R1a1-M17 показывает самую высокую дисперсию в северо-западном регионе Индии... Остается вопрос о том, насколько отличительна история L1 относительно некоторых или всех представителей R1a1 и R2. Эта неопределенность нейтрализует предыдущие выводы о том, что вторжение HG R1a1 и R2 с северо-запада в дравидийские южные племена можно отнести к одному недавнему событию. [R1a1 и R2] могли фактически прибыть в южную Индию из юго-западного азиатского региона-источника несколько раз, причем некоторые эпизоды значительно раньше других. Существуют значительные археологические свидетельства относительно присутствия мезолитических народов в Индии (Kennedy 2000), некоторые из которых могли проникнуть на субконтинент с северо-запада во время позднеплейстоценовая эпоха. Высокая дисперсия R1a1 в Индии (таблица 12), пространственное распределение частот микросателлитных дисперсионных клинов R1a1 (рис. 4) и время расширения (таблица 11) подтверждают эту точку зрения." [33]
  8. ^ Лалуеза-Фокс: «Несколько лет назад местные ученые поддержали точку зрения, что существование хромосомы R1a Y не было связано с потоком чужеродных генов, а что эта линия возникла на субконтиненте и распространилась оттуда. Но филогенетическая реконструкция этой гаплогруппы не подтвердила эту точку зрения». [37]
  9. ^ Тем не менее, Хаак и др. также прямо заявляют: «тип ближневосточного происхождения, отличающийся от того, который был привнесен ранними земледельцами». [ необходимо разъяснение ] [39]
  10. ^ Согласно генеалогическому древу ДНК, L664 образовался 4700 лет назад, то есть 2700 лет до н.э. [9]
  11. ^ Lazaridis, Twitter, 18 июня 2016 г.: «I1635 (Armenia_EBA) — это R1b1-M415(xM269). Мы обязательно включим это в пересмотр. Спасибо тому, кто заметил! #ILovePreprints». [ ненадежный источник? ]
    См. также «Большое дело 2016 года: территория современного Ирана не может быть родиной индоевропейцев». Блог Eurogenes . 26 ноября 2016 г.,[ ненадежный источник? ] для обсуждения той же темы.
  12. ^ См. карту распределения M780 в блоге Dieneke's Anthropology Blog, Основная новая статья о глубоком происхождении Y-гаплогруппы R1a (Underhill et al. 2014) [43]
  13. ^ Согласно генеалогическому древу ДНК, M780 сформировался 4700 лн. [9] Эта датировка совпадает с движением на восток между 2800 и 2600 гг. до н. э. ямной культуры в регион полтавкинской культуры , предшественницы синташтинской культуры , из которой произошли индоиранцы. M780 сосредоточен в долине Ганга, локусе классического ведического общества .
  14. ^ Позник и др. (2016) проводят расчеты, используя время генерации в 30 лет; время генерации в 20 лет дает другие результаты.
  15. ^ «Доказательства того, что кластер Steppe_MLBA [средний и поздний бронзовый век] является вероятным источником степного происхождения в Южной Азии, также подтверждаются данными Y-хромосомы, поскольку гаплогруппа R1a, которая относится к подтипу Z93, распространенному в Южной Азии сегодня [Underhill et al. (2014), Silva et al. (2017)], была высокочастотной в Steppe_MLBA (68%) (16), но редкой в ​​Steppe_EMBA [ранний и средний бронзовый век] (отсутствует в наших данных)». [44]
  16. ^ Балановский (2015), с. 208 (на русском языке) Прежде всего, это преобладание в славянских популяциях дославянского субстрата — двух ассимилированных ими генетических компонентов — восточноевропейских для западных и восточных славян и южноевропейских для южных славян... Можно с осторожностью предположить, что ассимилированный субстрат может быть представлен преимущественно балтоязычными популяциями. . Действительно, археологические данные указывают на очень широкое распространение балтских групп перед началом расселения славян. Балтский субстрату славян (правда, говорится с финно-угорским) выявили и антропологи. Полученные нами генетические данные — и на графиках генетических циклов, и по доле составленных фрагментов генома — показывают, что современные балтские народы являются ближайшими генетическими соседями восточных славян. При этом балты являются и лингвистически ближайшими родственниками славян. И можно полагать, что к моменту ассимиляции их генофонд не так сильно отличался от генофонда, начавшего свое широкое расселение славян. Поэтому, если предположить, что расселяющиеся на востоке славяне ассимилировались по преимуществу балтов, это может объяснить и сходство современных славянских и балтских народов с другими, и их отличие от окружающих их небалто-славянских групп Европы... В работе высказывается осторожное предположение, что ассимилированный субстрат мог быть представлен в пользу балтоязычных популяций. Действительно, археологические данные указывают на очень широкое распространение балтских групп перед началом расселения славян. Балтский субстрат у славян (правда, говорится с финно-угорским) выявили и антропологи. Полученные в этой работе генетические данные — и на графиках генетических изменений, и на основе фрагментов генома — показывают, что современные балтские народы являются ближайшими генетическими соседями восточных славян.

Ссылки

  1. ^ abcdef Шарма и др. 2009.
  2. ^ abcdefghijklmnopqrstu Андерхилл и др. 2014.
  3. ^ abcdefghijklmnopqr Underhill et al. 2009.
  4. ^ ab Underhill et al. 2014, стр. 130.
  5. ^ аб Сааг, Лехти; Васильев Сергей Владимирович; Варул, Лийви; Косорукова Наталья Владимировна; Герасимов Дмитрий В.; Ошибкина Светлана Владимировна; Гриффит, Сэмюэл Дж.; Сольник, Ану; Сааг, Лаури; Д'Атанасио, Евгения; Мецпалу, Эне (январь 2021 г.). «Изменения генетического происхождения при переходе от каменного века к бронзовому веку на восточноевропейской равнине». Достижения науки . 7 (4): eabd6535. Бибкод : 2021SciA....7.6535S. doi : 10.1126/sciadv.abd6535. ПМЦ 7817100 . ПМИД  33523926. 
  6. ^ Хаак, Вольфганг; Лазаридис, Иосиф; Паттерсон, Ник; Роланд, Надин; Маллик, Свапан; Лламас, Бастьен; Брандт, Гвидо; Норденфельт, Сюзанна; Харни, Иадаойн; Стюардсон, Кристин; Фу, Цяомей (10 февраля 2015 г.). «Массовая миграция из степи — источник индоевропейских языков в Европе». bioRxiv : 013433. arXiv : 1502.02783 . doi :10.1101/013433. S2CID  196643946. Архивировано из оригинала 23 декабря 2019 г. Получено 8 февраля 2021 г.
  7. ^ Рагхаван, Маанаса; Скоглунд, Понтус; Граф, Келли Э.; Метспалу, Майт; Альбрехтсен, Андерс; Мольтке, Ида; Расмуссен, Саймон; Стаффорд-младший, Томас У.; Орландо, Людовик; Метспалу, Эне; Кармин, Моника (январь 2014 г.). «Верхний палеолитический сибирский геном обнаруживает двойное происхождение коренных американцев». Nature . 505 (7481): 87–91. Bibcode :2014Natur.505...87R. doi :10.1038/nature12736. PMC 4105016 . PMID  24256729. 
  8. ^ Narasimhan, Vagheesh M.; Patterson, Nick; Moorjani, Priya; Rohland, Nadin; Bernardos, Rebecca; Mallick, Swapan; Lazaridis, Iosif; Nakatsuka, Nathan; Olalde, Iñigo; Lipson, Mark; Kim, Alexander M. (6 сентября 2019 г.). «Формирование человеческих популяций в Южной и Центральной Азии». Science . 365 (6457): eaat7487. doi :10.1126/science.aat7487. PMC 6822619 . PMID  31488661. Типы гаплогруппы Y-хромосомы R1b или R1a не представлены в Иране и Туране в этот период ... 
  9. ^ abcdefghij "R1a tree". YFull . Архивировано из оригинала 19 августа 2016 г. Получено 15 июля 2016 г.
  10. ^ abc Мирабаль и др. 2009.
  11. ^ Zerjal, T.; et al. (1999). «Использование вариаций ДНК Y-хромосомы для исследования истории популяций: недавнее мужское распространение в Азии и Европе». В Papiha, SS; Deka, R. & Chakraborty, R. (ред.). Геномное разнообразие: применение в генетике популяций человека . Нью-Йорк: Kluwer Academic/Plenum Publishers. стр. 91–101. ISBN 978-0-3064-6295-5.
  12. ^ abcdef Семино и др. 2000.
  13. ^ ab Уэллс 2001.
  14. ^ abc Памжав и др. 2012.
  15. ^ ab Хаак и др. 2015.
  16. ^ ab Аллентофт и др. 2015.
  17. ^ ab Матисон и др. 2015.
  18. ^ abc Сильва и др. 2017.
  19. ^ Джозеф, Тони (16 июня 2017 г.). «Как генетика улаживает спор об арийской миграции». The Hindu . Архивировано из оригинала 4 октября 2023 г. Получено 2 июня 2019 г.
  20. ^ Энтони 2007.
  21. ^ Энтони и Ринге 2015.
  22. ^ ab Хаак и др. 2015, стр. 5.
  23. ^ Семенов и Булат 2016.
  24. ^ Хабер и др. 2012 «R1a1a7-M458 отсутствовал в Афганистане, что позволяет предположить, что R1a1a-M17 не подтверждает, как считалось ранее [47], экспансию из Понтийской степи [3], принесшую индоевропейские языки в Центральную Азию и Индию».
  25. ^ Клейн, Лео С. (22 апреля 2017 г.). «Степная гипотеза индоевропейского происхождения еще не доказана». Acta Archaeologica . 88 (1): 193–204. doi :10.1111/j.1600-0390.2017.12184.x. ISSN  0065-101X. Архивировано из оригинала 25 декабря 2022 г. Получено 23 ноября 2022 г.«Что касается Y-хромосомы, то уже было отмечено в работе Хаака, Лазаридиса и др. (2015), что ямная культура из Самары имела Y-хромосому, которая принадлежала к R-M269, но не принадлежала к кладе, распространенной в Западной Европе (стр. 46 приложения). Кроме того, в ямной культуре нет ни одной R1a, в отличие от шнуровой керамики (доминирует R1a)».
  26. ^ Кох, Джон Т.; Канлифф, Барри (2016). Кельты с Запада 3: Атлантическая Европа в эпоху металлов. Oxbow Books. стр. 634. ISBN 978-1-78570-228-0. Архивировано из оригинала 23 ноября 2022 г. . Получено 23 ноября 2022 г. .
  27. ^ Семенов и Булат 2016, с. 41.
  28. ^ abcd Кивисилд и др. 2003.
  29. ^ Sengupta S, Zhivotovsky LA, King R, Mehdi SQ, Edmonds CA, Chow CE и др. (февраль 2006 г.). «Полярность и временность распределений Y-хромосомы высокого разрешения в Индии выявляют как местные, так и экзогенные расширения и выявляют незначительное генетическое влияние скотоводов Центральной Азии». American Journal of Human Genetics . 78 (2): 202–221. doi :10.1086/499411. PMC 1380230 . PMID  16400607. «Хотя значительное культурное влияние на социальную иерархию и язык в Южной Азии можно отнести к прибытию кочевых скотоводов из Центральной Азии, генетические данные (митохондриальные и Y-хромосомные) дали резко противоречивые выводы о генетическом происхождении племен и каст Южной Азии. Мы стремились разрешить этот конфликт, используя данные высокого разрешения по 69 информативным бинарным маркерам Y-хромосомы и 10 микросателлитным маркерам из большого набора географически, социально и лингвистически репрезентативных этнических групп Южной Азии. Мы обнаружили, что влияние Центральной Азии на уже существующий генофонд было незначительным. Возраст накопленных микросателлитных вариаций в большинстве индийских гаплогрупп превышает 10 000–15 000 лет, что свидетельствует о древности региональной дифференциации. Поэтому наши данные не подтверждают модели, которые ссылаются на выраженный недавний генетический вклад из Центральной Азии для объяснения наблюдаемой генетической изменчивости в Южной Азии. Гаплогруппы R1a1 и R2 указывают на демографическую сложность, которая не согласуется с недавней единой историей. АССОЦИИРОВАННЫЙ МИКРОСАТЕЛЛИТНЫЙ АНАЛИЗ ХРОМОСОМ ВЫСОКОЧАСТОТНОЙ ГАПЛОГРУПЦИИ R1A1 УКАЗЫВАЕТ НА НЕЗАВИСИМУЮ НЕДАВНЮЮ ИСТОРИЮ ДОЛИНЫ ИНДИЯ И ПОЛУОСТРОВНОГО РЕГИОНА ИНДИИ.
  30. ^ Thanseem I, Thangaraj K, Chaubey G, Singh VK, Bhaskar LV, Reddy BM и др. (август 2006 г.). «Генетическое родство среди низших каст и племенных групп Индии: выводы из Y-хромосомы и митохондриальной ДНК». BMC Genetics . 7 : 42. doi : 10.1186/1471-2156-7-42 . PMC 1569435. PMID  16893451 . 
  31. ^ Sahoo S, Singh A, Himabindu G, Banerjee J, Sitalaximi T, Gaikwad S и др. (январь 2006 г.). «Предыстория индийских Y-хромосом: оценка сценариев демической диффузии». Труды Национальной академии наук Соединенных Штатов Америки . 103 (4): 843–848. Bibcode : 2006PNAS..103..843S. doi : 10.1073/pnas.0507714103 . PMC 1347984. PMID  16415161 . 
  32. ^ Thangaraj K, Naidu BP, Crivellaro F, Tamang R, Upadhyay S, Sharma VK и др. (декабрь 2010 г.). Cordaux R (ред.). «Влияние естественных барьеров на формирование генетической структуры популяций Махараштры». PLOS ONE . 5 (12): e15283. Bibcode : 2010PLoSO...515283T. doi : 10.1371/journal.pone.0015283 . PMC 3004917. PMID  21187967 . 
  33. ^ abcdef Сенгупта 2006.
  34. ^ abcde Sahoo et al. 2006.
  35. ^ ab Thangaraj et al. 2010.
  36. ^ Саху и др. 2006, с. 845-846.
  37. ^ ab Lalueza-Fox, C. (2022). Неравенство: Генетическая история. MIT Press. стр. 81–82. ISBN 978-0-262-04678-7. Архивировано из оригинала 16 июля 2023 г. . Получено 16 июля 2023 г. .
  38. ^ Нарасимхан и др. 2019.
  39. ^ Хаак и др. 2015, стр. 4.
  40. ^ abc Маскареньяс и др. 2015, с. 9.
  41. ^ аб Позник и др. 2016, с. 5.
  42. ^ Блог Араме на английском языке, Y ДНК с древнего Ближнего Востока. Архивировано 27 ноября 2016 г., на Wayback Machine.
  43. ^ "Блог антропологии Диенекеса: Новая важная статья о глубинном происхождении Y-гаплогруппы R1a (Underhill et al. 2014)". 27 марта 2014 г. Архивировано из оригинала 20 декабря 2019 г. Получено 20 декабря 2019 г.[ ненадежный источник? ]
  44. ^ ab Нарасимхан и др. 2018.
  45. ^ abc "О нас". Генеалогическое древо ДНК . Архивировано из оригинала 15 августа 2019 г. Получено 20 декабря 2019 г.
  46. ^ abcdefghijklmnopqrstu vwxyz aa "ISOGG 2017 Y-DNA Haplogroup R". isogg.org . Архивировано из оригинала 10 февраля 2007 г. . Получено 20 декабря 2019 г. .
  47. ^ abcdefghijk "Haplogroup R (Y-DNA) - SNPedia". www.snpedia.com . Архивировано из оригинала 5 мая 2018 г. Получено 20 декабря 2019 г.
  48. ^ Карафет и др. 2014.
  49. ^ abcdefghijklm Андерхилл и др. 2014, стр. 125.
  50. ^ "R1a in Yamnaya". Блог Eurogenes . 21 марта 2016 г. Архивировано из оригинала 5 мая 2018 г. Получено 20 декабря 2019 г.
  51. ^ "Y-ДНК гаплогруппа R и ее субклады". Международное общество генетической генеалогии (ISOGG). Архивировано из оригинала 30 марта 2019 г. Получено 8 января 2011 г.
  52. ^ Krahn, Thomas. "Draft Y-Chromosome Tree". Генеалогическое древо ДНК . Архивировано из оригинала 26 мая 2013 г. Получено 7 декабря 2012 г.
  53. ^ Регейру 2006.
  54. ^ Фредер, Джанин (2010). Die mittelalterlichen Skelette von Usedom: Anthropologische Bearbeitung unter besonderer Berücksichtigung des ethnischen Hintergrundes [ Антропологическое исследование с должным учетом этнического происхождения ] (Диссертация) (на немецком языке). Свободный университет Берлина. п. 86. дои : 10.17169/refubium-8995.
  55. ^ https://cyberleninka.ru/article/n/tyurki-kavkaza-sravnitelnyy-analiz-genofondov-po-dannym-oy-hromosome. Архивировано 7 ноября 2023 года, в Wayback Machine "высокая частота R1a среди кубанских ногайцев (подветвь R1a1a1g) -M458 забирает 18%"
  56. ^ Андерхилл, PA; et al. (2009). «Разделение постледникового совместного происхождения европейских и азиатских y-хромосом в пределах гаплогруппы R1a». Европейский журнал генетики человека . 18 (4): 479–484. doi :10.1038/ejhg.2009.194. PMC 2987245. PMID  19888303 . 
  57. ^ Gwozdz, Peter (6 августа 2018 г.). "Польские Y-ДНК-клады". Архивировано из оригинала 15 июля 2016 г. Получено 15 июля 2016 г.
  58. ^ Павловски и др. 2002.
  59. ^ ab Gwozdz 2009.
  60. ^ ab Kars, ME; Başak, AN; Onat, OE; Bilguvar, K.; Choi, J.; Itan, Y.; Çağlar, C.; Palvadeau, R.; Casanova, JL; Cooper, DN; Stenson, PD; Yavuz, A.; Buluş, H.; Günel, M.; Friedman, JM; Özçelik, T. (2021). «Генетическая структура турецкой популяции обнаруживает высокий уровень изменчивости и примесей». Труды Национальной академии наук Соединенных Штатов Америки . 118 (36): e2026076118. Bibcode : 2021PNAS..11826076K. doi : 10.1073/pnas.2026076118 . PMC 8433500. PMID  34426522 . 
  61. ^ Петрейчикова, Ева; Сотак, Мирослав; Бернасовска, Ярмила; Бернасовский, Иван; Совикова, Адриана; Бозикова, Александра; Боронова, Ивета; Швицкова, Петра; Габрикова, Дана; МаЦекова, Сона (2009). «Частоты Y-гаплогруппы в населении словацких цыган». Антропологическая наука . 117 (2): 89–94. дои : 10.1537/ase.080422 .
  62. ^ abc Saag et al. 2020, стр. 5.
  63. ^ Аб Сааг и др. 2020, с. 29, таблица 1.
  64. ^ Сааг и др. 2020, Дополнительные данные 2, строка 4.
  65. ^ Пост, Козимо; Ю, Хэ; Галичи, Айшин; Ружье, Элен; Кревкер, Изабель; Хуан, Илей; Рингбауэр, Харальд; Рорлах, Адам Б.; Нэгеле, Катрин; Вильяльба-Моуко, Ванесса; Радзевичюте, Рита; Феррас, Тьяго; Стессель, Александр; Тухбатова, Резеда; Друкер, Дороти Г. (1 марта 2023 г.). «Палеогеномика от верхнего палеолита до неолита европейских охотников-собирателей». Природа . 615 (7950): 117–126. дои : 10.1038/s41586-023-05726-0. hdl : 10256/23099 . ISSN  1476-4687.
  66. ^ Фу и др. 2016.
  67. ^ Сааг и др. 2017.
  68. ^ Энтони 2019, стр. 16, 17.
  69. ^ ab Хаак и др. 2008.
  70. ^ Брэндит и др. 2013.
  71. ^ Мальмстрем и др. 2019, с. 2.
  72. ^ Сааг и др. 2020, Дополнительные данные 2, строки 5–49.
  73. ^ Швейцер, Д. (23 марта 2008 г.). "Анализ данных о пещере Лихтенштейн" (PDF) . dirkschweitzer.net. Архивировано из оригинала (PDF) 14 августа 2011 г.Резюме на английском языке Schilz (2006).
  74. ^ abc Кейзер и др. 2009.
  75. ^ Рико и др. 2004.
  76. ^ Корниенко, ИВ; Водолажский Д.И. "Использование нерекомбинантных маркеров Y-хромосомы в исследовании древних популяций (на примере поселения Танаис)" . Материалы Донских антропологических чтений. Ростов-на-Дону: Ростовский научно-исследовательский институт онкологии, 2013.
  77. ^ Чуньсян Ли и др. 2010.
  78. ^ Ким и др. 2010.
  79. ^ ab Балановский и др. 2008.
  80. ^ ab Бехар и др. 2003.
  81. ^ Касперавичюте, Кучинскас и Стоункинг 2005.
  82. ^ ab Батталья и др. 2008.
  83. ^ ab Россер и др. 2000.
  84. ^ Тамбетс и др. 2004.
  85. ^ Боуден и др. 2008.
  86. ^ Дюпюи и др. 2005.
  87. ^ Пассарино и др. 2002.
  88. ^ Капелли и др. 2003.
  89. ^ Кайзер и др. 2005.
  90. ^ Санчес, Дж.; Борстинг, К.; Халленберг, К.; Бухард, А.; Эрнандес, А.; Морлинг, Н. (2003). «Мультиплексная ПЦР и минисеквенирование однонуклеотидных полиморфизмов — модель с 35 однонуклеотидными полиморфизмами Y-хромосомы». Forensic Science International . 137 (1): 74–84. doi :10.1016/S0379-0738(03)00299-8. PMID  14550618.
  91. ^ Скоццари и др. 2001.
  92. ^ Андерхилл, Питер А. (1 января 2015 г.). «Филогенетическая и географическая структура гаплогруппы R1a Y-хромосомы». European Journal of Human Genetics . 23 (1): 124–131. doi :10.1038/ejhg.2014.50. PMC 4266736. PMID 24667786  . 
  93. ^ L. Barać; et al. (2003). "Y-хромосомное наследие хорватской популяции и ее островных изолятов" (PDF) . European Journal of Human Genetics . 11 (7): 535–42. doi : 10.1038/sj.ejhg.5200992 . PMID  12825075. S2CID  15822710. Архивировано из оригинала (PDF) 17 декабря 2012 г. . Получено 10 сентября 2009 г. .
  94. ^ S. Rootsi; et al. (2004). «Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe» (PDF) . American Journal of Human Genetics . 75 (1): 128–137. doi :10.1086/422196. PMC 1181996 . PMID  15162323. Архивировано из оригинала (PDF) 5 сентября 2020 г. . Получено 13 февраля 2021 г. . 
  95. ^ М. Перичич и др. (2005). «Высокоточный филогенетический анализ юго-восточной Европы прослеживает основные эпизоды отцовского потока генов среди славянских популяций». Молекулярная биология и эволюция . 22 (10): 1964–75. doi : 10.1093/molbev/msi185 . PMID  15944443.
  96. ^ М. Перичич и др. (2005). «Обзор хорватского генетического наследия, выявленного с помощью митохондриальной ДНК и Y-хромосомных линий». Хорватский медицинский журнал . 46 (4): 502–513. PMID  16100752.
  97. ^ Перичич и др. 2005.
  98. ^ "Без названия". pereformat.ru (на русском языке). Архивировано из оригинала 15 марта 2016 года . Получено 29 мая 2017 года .
  99. ^ "Без названия". www.rodstvo.ru . Архивировано из оригинала 16 сентября 2021 г. . Получено 29 мая 2017 г. .
  100. ^ Зерджал и др. 2002.
  101. ^ Хабер и др. 2012.
  102. ^ аб Ди Кристофаро и др. 2013.
  103. ^ ab Малярчук и др. 2013.
  104. ^ Аширбеков и др. 2017.
  105. ^ Шах 2011.
  106. ^ Арункумар 2012.
  107. ^ Тоомас Кивисилд; Сиири Рутси; Майт Метспалу; Эне Метспалу; Юри Парик; Катрин Калдма; Эсиен Усанга; Сарабджит Мастана; Суриндер С. Папиха; Ричард Виллемс. «Генетика языка и распространение сельского хозяйства в Индии» (PDF) . В P. Bellwwood; C. Renfrew (ред.). Исследование гипотезы распространения сельского хозяйства/языка . Монографии Института Макдональда. Кембриджский университет. стр. 215–222. Архивировано из оригинала (PDF) 19 февраля 2006 г. . Получено 20 декабря 2019 г. .
  108. ^ Форнарино и др. 2009.
  109. ^ Ван и др. 2003.
  110. ^ Чжоу и др. 2007.
  111. ^ Лю Шу-ху и др. 2018.
  112. ^ Чжун и др. 2011.
  113. ^ Чжун, Хуа; Ши, Хун; Ци, Сюэ-Бин; Дуань, Цзы-Юань; Тань, Пин-Пин; Цзинь, Ли; Су, Бин; Ма, Руньлинь Ц. (2011). «Расширенное исследование Y-хромосомы предполагает постледниковые миграции современных людей в Восточную Азию по северному маршруту». Молекулярная биология и эволюция . 28 (1): 717–727. doi : 10.1093/molbev/msq247 . PMID  20837606.
  114. ^ Шоу, Вэй-Хуа; Цяо, Вн-Фа; Вэй, Чуань-Ю; Дун, Юн-Ли; Тан, Си-Цзе; Ши, Хун; Тан, Вэнь-Ру; Сяо, Чунь-Цзе (2010). «Распределение Y-хромосомы среди популяций на северо-западе Китая выявляет значительный вклад скотоводов Центральной Азии и меньшее влияние западных евразийцев». Журнал генетики человека . 55 (5): 314–322. doi : 10.1038/jhg.2010.30 . PMID  20414255. S2CID  23002493.
  115. ^ Лелль и др. 2002.
  116. ^ Чангмай, Пия; Джайсамут, Китипонг; Кампуансай, Джатупол; и др. (2022). «Индийское генетическое наследие в популяциях Юго-Восточной Азии». PLOS Genetics . 18 (2): e1010036. doi : 10.1371/journal.pgen.1010036 . PMC 8853555. PMID  35176016 . 
  117. ^ Мохаммад и др. 2009.
  118. ^ Насидзе и др. 2004.
  119. ^ Насидзе и др. 2005.
  120. ^ Гругни и др. 2012.

Источники

Дальнейшее чтение

Внешние ссылки

ДНК-дерево
TMRCA
Различный