Большинство ракообразных являются свободноживущими водными животными , но некоторые из них являются наземными (например, мокрицы , песчанки ), некоторые являются паразитическими (например , корнеголовые , рыбьи вши , языковые черви ), а некоторые являются сидячими (например, морские желуди ). Группа имеет обширную летопись окаменелостей , уходящую корнями в кембрийский период . Более 7,9 миллионов тонн ракообразных в год вылавливаются рыболовством или фермерством для потребления человеком, [4] состоящие в основном из креветок . Криль и веслоногие рачки не так широко вылавливаются, но могут быть животными с самой большой биомассой на планете и составляют важную часть пищевой цепи. Научное изучение ракообразных известно как канцерология (альтернативно, малакостракология , крустацеология или крусталогия ), а ученый, работающий в области канцерологии, является канцерологом .
Анатомия
Тело ракообразного состоит из сегментов, которые сгруппированы в три области: цефалон или голова , [ 5] переон или грудь , [6] и плеон или брюшко . [7] Голова и грудь могут быть слиты вместе, образуя цефалоторакс , [ 8] который может быть покрыт одним большим панцирем . [9] Тело ракообразного защищено жестким экзоскелетом , который должен линять , чтобы животное росло. Оболочка вокруг каждого сомита может быть разделена на дорсальный тергум , вентральный стернум и латеральный плеврон. Различные части экзоскелета могут быть слиты вместе. [10] : 289
Каждый сомит или сегмент тела может нести пару придатков : на сегментах головы они включают две пары антенн , мандибулы и максиллы ; [5] грудные сегменты несут ноги , которые могут быть специализированы как переоподы (ходячие ноги) и максиллопедии (питательные ноги). [6] Malacostraca и Remipedia (и гексаподы) имеют брюшные придатки. Все другие классы ракообразных имеют безконечностное брюшко, за исключением тельсона и хвостовых ветвей , которые присутствуют во многих группах. [11] [12]
Брюшко у malacostracans несет плеоподы , [7] и заканчивается тельсоном, который несет анус , и часто окружен уроподами, образуя хвостовой веер . [13] Количество и разнообразие придатков у разных ракообразных может быть частично ответственно за успех группы. [14]
Конечности ракообразных , как правило, двуветвистые , то есть они разделены на две части; это включает вторую пару антенн, но не первую, которая обычно одноветвистая , исключение составляет класс Malacostraca, где антеннулы могут быть, как правило, двуветвистыми или даже трехветвистыми. [15] [16] Неясно, является ли двуветвистое состояние производным состоянием, которое развилось у ракообразных, или вторая ветвь конечности была утрачена во всех других группах. Трилобиты , например, также обладали двуветвистыми конечностями. [17]
Основная полость тела представляет собой открытую кровеносную систему , где кровь перекачивается в гемоцель сердцем, расположенным около спины. [18] У Malacostraca есть гемоцианин в качестве пигмента, переносящего кислород, в то время как у веслоногих рачков, остракод, морских желудей и жаброногих раков есть гемоглобины . [19] Пищеварительный тракт состоит из прямой трубки, которая часто имеет похожую на желудок «желудочную мельницу» для измельчения пищи и пару пищеварительных желез, которые поглощают пищу; эта структура имеет спиральную форму. [20] Структуры, которые функционируют как почки, расположены около усиков. Мозг существует в виде ганглиев рядом с усиками, а скопление основных ганглиев находится под кишечником. [21]
У многих десятиногих ракообразных первая (а иногда и вторая) пара плеоподов специализирована у самцов для передачи спермы. Многие наземные ракообразные (например, красный краб острова Рождества ) спариваются сезонно и возвращаются в море, чтобы выпустить яйца. Другие, например мокрицы , откладывают яйца на суше, хотя и во влажных условиях. У большинства десятиногих ракообразных самки сохраняют яйца до тех пор, пока из них не вылупятся свободно плавающие личинки. [22]
Экология
Большинство ракообразных являются водными, живущими либо в морской, либо в пресноводной среде, но несколько групп приспособились к жизни на суше, например, наземные крабы , наземные раки-отшельники и мокрицы . Морские ракообразные так же широко распространены в океанах, как насекомые на суше. [23] [24] Большинство ракообразных также подвижны , передвигаясь независимо, хотя несколько таксономических единиц являются паразитическими и живут, прикрепленными к своим хозяевам (включая морских вшей , рыбьих вшей , китовых вшей , языковых червей и Cymothoa exigua , всех из которых можно назвать «ракообразными вшами»), а взрослые усоногие раки ведут сидячий образ жизни — они прикреплены головой вперед к субстрату и не могут двигаться самостоятельно. Некоторые бранхиуры способны выдерживать быстрые изменения солености и также будут менять хозяев с морских на неморские виды. [25] : 672 Криль является нижним слоем и наиболее важной частью пищевой цепи в сообществах животных Антарктики . [26] : 64 Некоторые ракообразные являются значительными инвазивными видами , такими как китайский мохнаторукий краб, Eriocheir sinensis , [27] и азиатский прибрежный краб, Hemigrapsus sanguineus . [28] После открытия Суэцкого канала около 100 видов ракообразных из Красного моря и Индо-Тихоокеанского региона обосновались в восточном суббассейне Средиземноморья, часто оказывая значительное влияние на местные экосистемы. [29]
Жизненный цикл
Система спаривания
Большинство ракообразных раздельнополы и размножаются половым путем . Фактически, недавнее исследование объясняет, как самец T. californicus решает, с какими самками спариваться , по различиям в рационе, предпочитая, когда самки питаются водорослями, а не дрожжами. [30] Небольшое количество являются гермафродитами , включая морских желудей , ремипедов [31] и головоногих раков . [32] Некоторые даже могут менять пол в течение своей жизни. [32] Партеногенез также широко распространен среди ракообразных, когда жизнеспособные яйца производятся самкой без необходимости оплодотворения самцом. [30] Это происходит у многих жаброногих , некоторых остракод , некоторых изопод и некоторых «высших» ракообразных, таких как раки Marmorkrebs .
Яйца
У многих ракообразных оплодотворенные яйца выбрасываются в толщу воды , в то время как другие выработали ряд механизмов для удержания яиц до тех пор, пока они не будут готовы вылупиться. Большинство десятиногих раков вынашивают яйца, прикрепленные к плеоподам , в то время как перакариды , нотостраканы , аностраканы и многие изоподы образуют выводковую сумку из панциря и грудных конечностей. [30] Самки Branchiura не вынашивают яйца во внешних овисаках, а прикрепляют их рядами к камням и другим объектам. [33] : 788 Большинство лептостраканов и криля вынашивают яйца между своими грудными конечностями; некоторые веслоногие раки вынашивают свои яйца в специальных тонкостенных мешочках, в то время как другие прикрепляют их вместе в длинных запутанных нитях. [30]
Личинки
Ракообразные демонстрируют ряд личиночных форм, из которых самая ранняя и наиболее характерная — науплиус . У него три пары придатков , все они появляются из головы молодого животного, и один науплиальный глаз. В большинстве групп существуют дальнейшие личиночные стадии, включая зоэа (мн. ч. зоэа или зоэа [34] ). Это название было дано ему, когда натуралисты считали, что это отдельный вид. [35] Он следует за стадией науплиуса и предшествует пост-личинке . Личинки зоэа плавают с помощью своих грудных придатков , в отличие от науплиусов, которые используют головные придатки, и мегалопы, которые используют брюшные придатки для плавания. У него часто есть шипы на панцире , которые могут помогать этим маленьким организмам поддерживать направленное плавание. [36] У многих десятиногих ракообразных из-за их ускоренного развития зоэа является первой личиночной стадией. В некоторых случаях за стадией зоэа следует стадия мизиса, а в других — стадия мегалопы, в зависимости от группы ракообразных.
Обеспечивая маскировку от хищников, в остальном черные глаза у нескольких форм плавающих личинок покрыты тонким слоем кристаллического изоксантоптерина, который придает их глазам тот же цвет, что и окружающая вода, в то время как крошечные отверстия в слое позволяют свету достигать сетчатки. [37] По мере того, как личинки созревают во взрослых особей, слой перемещается в новое положение за сетчаткой, где он работает как зеркало обратного рассеивания, которое увеличивает интенсивность света, проходящего через глаза, как это наблюдается у многих ночных животных. [38]
восстановление ДНК
В попытке понять, могут ли процессы репарации ДНК защитить ракообразных от повреждения ДНК , были проведены фундаментальные исследования для выяснения механизмов репарации, используемых Penaeus monodon (черная тигровая креветка). [39] Было обнаружено, что репарация двухцепочечных разрывов ДНК в основном осуществляется путем точной гомологичной рекомбинационной репарации. Другой, менее точный процесс, микрогомологичное соединение концов , также используется для восстановления таких разрывов. Паттерн экспрессии генов, связанных с репарацией ДНК и реакцией на повреждение ДНК у веслоногого рачка Tigriopus japonicus, был проанализирован после ультрафиолетового облучения. [40] Это исследование выявило повышенную экспрессию белков, связанных с процессами репарации ДНК негомологичного соединения концов , гомологичной рекомбинации , репарации эксцизии оснований и репарации несоответствий ДНК .
Классификация и филогения
Название «ракообразные» восходит к самым ранним работам по описанию животных, включая работы Пьера Белона и Гийома Ронделе , но это название не использовалось некоторыми более поздними авторами, включая Карла Линнея , который включил ракообразных в « Aptera » в своей «Systema Naturae » . [41] Самой ранней номенклатурно- действительной работой, в которой использовалось название «Crustacea», была работа Мортена Тране Брюнниха « Zoologiæ Fundamenta» в 1772 году, [42] хотя он также включил в эту группу хелицеровых . [41]
Подтип ракообразных включает почти 67 000 описанных видов , [43] что, как полагают, составляет всего от 1 ⁄ 10 до 1 ⁄ 100 от общего числа, поскольку большинство видов остаются еще неоткрытыми . [44] Хотя большинство ракообразных имеют небольшие размеры, их морфология сильно различается и включает как крупнейшее членистоногое в мире — японского краба-паука с размахом ног 3,7 метра (12 футов) [45] , так и самого маленького, длиной 100 микрометров (0,004 дюйма) Stygotantulus stocki . [46] Несмотря на разнообразие форм, ракообразных объединяет особая личиночная форма, известная как науплиус .
Точные отношения Crustacea с другими таксонами не были полностью установлены по состоянию на апрель 2012 года [обновлять]. Исследования, основанные на морфологии, привели к гипотезе Pancrustacea , [47] в которой Crustacea и Hexapoda ( насекомые и их союзники) являются сестринскими группами . Более поздние исследования с использованием последовательностей ДНК предполагают, что Crustacea являются парафилетическими , а гексаподы вложены в более крупную кладу Pancrustacea . [48] [49]
Традиционная классификация Crustacea, основанная на морфологии, признавала от четырех до шести классов. [50]
Боуман и Абеле (1982) признавали 652 современных семейства и 38 отрядов, организованных в шесть классов: Branchiopoda , Remipedia , Cephalocarida , Maxillopoda, Ostracoda и Malacostraca . [50] Мартин и Дэвис (2001) обновили эту классификацию, сохранив шесть классов, но включив 849 современных семейств в 42 отряда. Несмотря на изложение доказательств того, что Maxillopoda не является монофилетическим, они сохранили его как один из шести классов, хотя и предположили, что Maxillipoda можно заменить, повысив его подклассы до классов. [51] С тех пор филогенетические исследования подтвердили полифилию Maxillipoda и парафилетическую природу Crustacea по отношению к Hexapoda. [52] [53] [54] [55] В современных классификациях ракообразных или панкрустовых ракообразных выделяют от десяти до двенадцати классов, при этом несколько бывших подклассов максиллопод теперь признаются как классы (например, Thecostraca , Tantulocarida , Mystacocarida , Copepoda , Branchiura и Pentastomida ). [56] [57]
Следующая кладограмма показывает обновленные взаимоотношения между различными существующими группами парафилетических ракообразных по отношению к классу Hexapoda . [53]
Согласно этой диаграмме, Hexapoda находятся глубоко в древе ракообразных, и любой из Hexapoda заметно ближе, например, к Multicrustacean, чем к Oligostracan.
Ископаемые останки
Ракообразные имеют богатую и обширную летопись окаменелостей , которая начинается с таких животных, как Canadaspis и Perspicaris из среднего кембрия в сланцах Берджесс . [58] [59] Большинство основных групп ракообразных появляются в летописи окаменелостей до конца кембрия, а именно Branchiopoda , Maxillopoda (включая усоногих и языковых червей ) и Malacostraca ; ведутся споры о том, являются ли кембрийские животные, отнесенные к Ostracoda, действительно остракодами , которые в противном случае начались бы в ордовике . [60] Единственными классами, которые появились позже, являются Cephalocarida , [61] которые не имеют летописи окаменелостей, и Remipedia , которые были впервые описаны по ископаемому Tesnusocaris goldichi , но не появляются до карбона . [62] Большинство ранних ракообразных встречаются редко, но ископаемые ракообразные становятся многочисленными, начиная с каменноугольного периода . [58]
В Malacostraca не известны ископаемые останки криля [63], в то время как Hoplocarida и Phyllopoda содержат важные группы, которые в настоящее время вымерли, а также современных членов (Hoplocarida: раки-богомолы сохранились, в то время как Aeschronectida вымерли; [64] Phyllopoda: Canadaspidida вымерли, в то время как Leptostraca сохранились [59] ). Cumacea и Isopoda известны из карбона [ 65] [66] , как и первые настоящие раки-богомолы [67] В Decapoda креветки и полихелиды появляются в триасе [68] [69], а креветки и крабы появляются в юре [70] [71] Ископаемая нора Ophiomorpha приписывается креветкам-призракам, тогда как ископаемая нора Camborygma приписывается ракам. В пермско-триасовых отложениях Нурры сохранились древнейшие (пермь: Roadian) речные норы, приписываемые креветкам-призракам (Decapoda: Axiidea, Gebiidea) и ракам (Decapoda: Astacidea, Parastacidea) соответственно. [72]
Многие ракообразные потребляются людьми, и в 2007 году было выловлено около 10 700 000 тонн ; подавляющее большинство этой продукции составляют десятиногие ракообразные : крабы , омары , креветки , лангусты и креветки . [74] Более 60% по весу всех ракообразных, выловленных для потребления, составляют креветки, и почти 80% производится в Азии, причем один только Китай производит почти половину мирового объема. [74] Недесятиногие ракообразные не потребляются широко, вылавливается всего 118 000 тонн криля , [74] несмотря на то, что криль имеет одну из самых больших биомасс на планете. [75]
^ Рота-Стабелли, Омар; Каял, Эхсан; Глисон, Дайанна; и др. (2010). «Экдисозойная митогеномика: доказательства общего происхождения конечноногих беспозвоночных, панартропод». Геномная биология и эволюция . 2 : 425–440. doi : 10.1093/gbe/evq030. ПМК 2998192 . ПМИД 20624745.
^ Koenemann, Stefan; Jenner, Ronald A.; Hoenemann, Mario; et al. (2010-03-01). «Пересмотр филогении членистоногих с упором на взаимоотношения ракообразных». Arthropod Structure & Development . 39 (2–3): 88–110. Bibcode : 2010ArtSD..39...88K. doi : 10.1016/j.asd.2009.10.003. ISSN 1467-8039. PMID 19854296.
^ «Состояние мирового рыболовства и аквакультуры 2018 г. — Достижение целей устойчивого развития» (PDF) . fao.org . Рим: Продовольственная и сельскохозяйственная организация Объединенных Наций . 2018.
^ Фрич, Мартин; Рихтер, Стефан (5 сентября 2022 г.). «Как формирование паттернов тела могло бы работать в эволюции членистоногих — исследование мистакокарида Derocheilocaris remanei (Crustacea, Oligostraca)». Журнал экспериментальной зоологии, часть B: Молекулярная и эволюционная эволюция . 338 (6): 342–359. Bibcode : 2022JEZB..338..342F. doi : 10.1002/jez.b.23140 . PMID 35486026. S2CID 248430846.
^ NC Hughes (февраль 2003 г.). «Тагмоз трилобитов и формирование рисунка тела с морфологической и эволюционной точек зрения». Интегративная и сравнительная биология . 43 (1): 185–206. doi : 10.1093/icb/43.1.185 . PMID 21680423.
^ Акира Сакурай. «Закрытая и открытая кровеносная система». Университет штата Джорджия . Архивировано из оригинала 2016-09-17 . Получено 2016-09-10 .
^ Клаус Урих (1994). «Дыхательные пигменты». Сравнительная биохимия животных . Springer . С. 249–287. ISBN978-3-540-57420-0.
^ HJ Ceccaldi. Анатомия и физиология пищеварительного тракта ракообразных десятиногих, выращиваемых в аквакультуре (PDF) . AQUACOP, IFREMER. Actes de Colloque 9. стр. 243–259.{{cite book}}: |work=проигнорировано ( помощь ) [ постоянная мертвая ссылка ]
^ Алан П. Кович; Джеймс Х. Торп (1991). "Crustacea: Introduction and Peracarida". В Джеймс Х. Торп; Алан П. Кович (ред.). Экология и классификация североамериканских пресноводных беспозвоночных (1-е изд.). Academic Press . стр. 665–722. ISBN978-0-12-690645-5. Получено 10.09.2016 .
^ Virtue, PD; Nichols, PD; Nicols, S. (1997). «Диетические механизмы выживания Euphasia superba: биохимические изменения во время длительного голодания и бактерии как возможный источник питания». В Bruno Battaglia; Valencia, José; Walton, DWH (ред.). Сообщества Антарктиды: виды, структура и выживание . Cambridge University Press . ISBN978-0-521-48033-8. Получено 10.09.2016 .
^ Голлаш, Стефан (30 октября 2006 г.). "Eriocheir sinensis" (PDF) . Глобальная база данных инвазивных видов . Группа специалистов по инвазивным видам . Архивировано из оригинала (PDF) 24.12.2017 . Получено 10.09.2016 .
^ Джон Дж. Макдермотт (1999). «Западно-тихоокеанская брахиура Hemigrapsus sanguineus (Grapsidae) в новой среде обитания вдоль Атлантического побережья США: питание, морфология хелипедов и рост». В Schram, Frederick R. ; Klein, JC von Vaupel (ред.). Ракообразные и кризис биоразнообразия: Труды Четвертого международного конгресса по ракообразным, Амстердам, Нидерланды, 20–24 июля 1998 г. Koninklijke Brill . стр. 425–444. ISBN978-90-04-11387-9. Получено 10.09.2016 .
^ Галиль, Белла; Фроглиа, Карло; Ноэль, Пьер (2002). Бриан, Фредерик (ред.). Атлас экзотических видов Средиземноморья CIESM: Том 2. Ракообразные. Париж, Монако: Издательство CIESM. С. 192. ISBN92-990003-2-8.
^ ab DE Aiken; V. Tunnicliffe; CT Shih; LD Delorme. "Crustacean". Канадская энциклопедия . Архивировано из оригинала 2011-06-07 . Получено 2016-09-10 .
^ Алан П. Кович; Джеймс Х. Торп (2001). «Введение в подтип ракообразных». В Джеймс Х. Торп; Алан П. Кович (ред.). Экология и классификация североамериканских пресноводных беспозвоночных (2-е изд.). Academic Press . стр. 777–798. ISBN978-0-12-690647-9. Получено 10.09.2016 .
^ Шавит, Кешет и др., Настраиваемый отражатель, позволяющий ракообразным видеть, но не быть увиденными , Science , 16 февраля 2023 г., опубликовано в томе 379, выпуск 6633, 17 февраля 2023 г.
↑ Дафф, Мег (16 февраля 2023 г.). ««Диско-блеск для глаз» делает детенышей ракообразных невидимыми». Slate – через slate.com.
^ Шривастава, Шикха; Дахал, Сумедха; Найду, Шаранья Дж.; Ананд, Дипика; Гопалакришнан, Видья; Кулот Валаппил, Раджендран; Рагхаван, Сатис К. (24 января 2017 г.). «Репарация двухцепочечного разрыва ДНК у Penaeus monodon преимущественно зависит от гомологичной рекомбинации». Исследования ДНК . 24 (2): 117–128. doi : 10.1093/dnares/dsw059. ПМК 5397610 . ПМИД 28431013.
^ Ри, Дж. С.; Ким, Б. М.; Чой, Б. С.; Ли, Дж. С. (2012). «Анализ паттернов экспрессии генов, связанных с репарацией ДНК и реакцией на повреждение ДНК, выявленный с помощью олигомикрочипа 55К при облучении УФ-В у приливной веслоногих рачков Tigriopus japonicus». Сравнительная биохимия и физиология. Токсикология и фармакология . 155 (2): 359–368. doi :10.1016/j.cbpc.2011.10.005. PMID 22051804.
^ М. Т. Брюнних (1772). Zoologiæ Fundamenta Prælectionibus Academicis Accomodata. Grunde i Dyrelaeren (на латыни и датском языке). Копенгаген и Лейпциг: Фридерикус Кристиан Пельт. стр. 1–254.
^ Чжи-Цян Чжан (2011). Z.-Q. Чжан (ред.). «Биоразнообразие животных: очерк высокоуровневой классификации и обзор таксономического богатства — Phylum Arthropoda von Siebold, 1848» (PDF) . Zootaxa . 4138 : 99–103.
^ "Японские крабы-пауки прибыли в аквариум". Oregon Coast Aquarium . Архивировано из оригинала 2010-03-23 . Получено 2016-09-10 .
^ Крейг Р. МакКлейн; Элисон Г. Бойер (22 июня 2009 г.). «Биоразнообразие и размер тела связаны у разных метазоа». Труды Королевского общества B: Биологические науки . 276 (1665): 2209–2215. doi :10.1098/rspb.2009.0245. PMC 2677615. PMID 19324730 .
^ J. Zrzavý; P. Štys (май 1997). «Основной план строения тела членистоногих: взгляд из эволюционной морфологии и биологии развития». Журнал эволюционной биологии . 10 (3): 353–367. doi : 10.1046/j.1420-9101.1997.10030353.x . S2CID 84906139.
^ Джером К. Регье; Джеффри В. Шульц; Андреас Цвик; Эйприл Хасси; Бернард Болл; Регина Ветцер; Джоэл В. Мартин; Клиффорд В. Каннингем (25 февраля 2010 г.). «Связи членистоногих, выявленные с помощью филогеномного анализа последовательностей, кодирующих ядерные белки». Nature . 463 (7284): 1079–1083. Bibcode :2010Natur.463.1079R. doi :10.1038/nature08742. PMID 20147900. S2CID 4427443.
^ Бьёрн М. фон Реймонт; Рональд А. Дженнер; Мэтью А. Уиллс; Эмилиано Делл'Ампио; Гюнтер Пасс; Инго Эберсбергер; Бенджамин Мейер; Стефан Кёнеманн; Томас М. Илифф; Александрос Стаматакис; Оливер Нихёйс; Карен Мойземанн; Бернхард Мисоф (март 2012 г.). «Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda». Молекулярная биология и эволюция . 29 (3): 1031–1045. doi : 10.1093/molbev/msr270 . PMID 22049065.
^ ab Joel W. Martin; George E. Davis (2001). Обновленная классификация современных ракообразных (PDF) . Музей естественной истории округа Лос-Анджелес . стр. 1–132. Архивировано из оригинала (PDF) 2013-05-12 . Получено 2009-12-14 .
^ Huys, Rony (2003). «Обновленная классификация современных ракообразных». обзор. Журнал биологии ракообразных . 23 (2): 495–497. doi : 10.1163/20021975-99990355 .
^ Окли, Тодд Х.; Вулф, Джоанна М.; Линдгрен, Энни Р.; Захарофф, Александр К. (январь 2013 г.). «Филотранскриптомика для включения недоизученного в лоно: монофилетические остракоды, размещение ископаемых и филогения панкрустовых». Молекулярная биология и эволюция . 30 (1): 215–233. doi : 10.1093/molbev/mss216 . PMID 22977117.
^ ab Schwentner, M; Combosch, DJ; Nelson, JP; Giribet, G (2017). «Филогеномное решение происхождения насекомых путем разрешения отношений ракообразных и гексапод». Current Biology . 27 (12): 1818–1824.e5. Bibcode : 2017CBio...27E1818S. doi : 10.1016/j.cub.2017.05.040 . PMID 28602656.
^ Лосано-Фернандес, Иисус; Джакомелли, Маттиа; Флеминг, Джеймс Ф.; Чен, Альберт; Винтер, Якоб; Томсен, Филип Фрэнсис; Гленнер, Хенрик; Палеро, Ферран; Легг, Дэвид А.; Илиффе, Томас М.; Пизани, Давиде; Олесен, Йорген (2019). «Эволюция панкреатических ракообразных, освещенная таксон-богатыми наборами данных геномного масштаба с расширенной выборкой ремипедов». Геномная биология и эволюция . 11 (8): 2055–2070. doi :10.1093/gbe/evz097. PMC 6684935. PMID 31270537 .
^ Бернот, Джеймс П.; Оуэн, Кристофер Л.; Вольф, Джоанна М.; Меланд, Кеннет; Олесен, Йорген; Крэндалл, Кит А. (2023). «Основные изменения в филогении панкрустовых и доказательства чувствительности к выборке таксонов». Молекулярная биология и эволюция . 40 (8): msad175. doi : 10.1093/molbev/msad175. PMC 10414812. PMID 37552897.
^ Бруска, Ричард С. (2016). Беспозвоночные (3-е изд.). Сандерленд, Массачусетс: Sinauer Associates. стр. 222. ISBN9781605353753.
^ ab "Fossil Record". Fossil Groups: Crustacea . University of Bristol . Архивировано из оригинала 2016-09-07 . Получено 2016-09-10 .
^ ab Briggs, Derek (23 января 1978 г.). «Морфология, образ жизни и родственные связи Canadaspis perfecta (Crustacea: Phyllocarida), средний кембрий, сланцы Берджесс, Британская Колумбия». Philosophical Transactions of the Royal Society B . 281 (984): 439–487. Bibcode :1978RSPTB.281..439B. doi :10.1098/rstb.1978.0005.
^ Hessler, RR (1984). "Cephalocarida: живое ископаемое без ископаемых записей". В N. Eldredge; SM Stanley (ред.). Living Fossils . Нью-Йорк: Springer Verlag. стр. 181–186. ISBN978-3-540-90957-6.
^ Koenemann, Stefan ; Schram, Frederick R.; Hönemann, Mario; Iliffe, Thomas M. (12 апреля 2007 г.). «Филогенетический анализ Remipedia (Crustacea)». Organisms Diversity & Evolution . 7 (1): 33–51. Bibcode : 2007ODivE...7...33K. doi : 10.1016/j.ode.2006.07.001.
^ "Antarctic Prehistory". Australian Antarctic Division . 29 июля 2008 г. Архивировано из оригинала 30 сентября 2009 г. Получено 25 февраля 2010 г.
^ Дженнер, Рональд А.; Хоф, Сис Х. Дж.; Шрам, Фредерик Р. (1998). «Палео- и археостоматоподы (Hoplocarida: Crustacea) из известняка Bear Gulch, миссисипский ярус (намюрский ярус), центральная Монтана». Вклад в зоологию . 67 (3): 155–186. doi : 10.1163/18759866-06703001 .
^ Шрам, Фредерик; Хоф, Сис Х. Дж.; Мейпс, Ройал Х. и Сноудон, Полли (2003). «Палеозойские кумовые (Crustacea, Malacostraca, Peracarida) из Северной Америки». Вклад в зоологию . 72 (1): 1–16. doi : 10.1163/18759866-07201001 .
^ Шрам, Фредерик Р. (28 августа 1970 г.). «Изопода из пенсильванского яруса Иллинойса». Science . 169 (3948): 854–855. Bibcode :1970Sci...169..854S. doi :10.1126/science.169.3948.854. PMID 5432581. S2CID 31851291.
^ Hof, Cees HJ (1998). "Ископаемые ротоногие моллюски (Crustacea: Malacostraca) и их филогенетическое влияние". Журнал естественной истории . 32 (10 и 11): 1567–1576. Bibcode : 1998JNatH..32.1567H. doi : 10.1080/00222939800771101.
^ Crean, Robert PD (14 ноября 2004 г.). "Dendrobranchiata". Отряд Decapoda . Университет Бристоля . Архивировано из оригинала 29 февраля 2012 г. . Получено 25 февраля 2010 г. .
^ Карасава, Хироаки; Такахаши, Фумио; Дои, Эйдзи; Исида, Хидео (2003). «Первое уведомление о семействе Coleiidae Van Straelen (Crustacea: Decapoda: Eryonoides) из верхнего триаса Японии». Палеонтологические исследования . 7 (4): 357–362. doi : 10.2517/prpsj.7.357 . S2CID 129330859.
^ Чейс, Феннер А. младший; Мэннинг, Рэймонд Б. (1972). «Две новые кариевые креветки, одна из которых представляет новое семейство, из морских бассейнов острова Вознесения (Crustacea: Decapoda: Natantia)». Smithsonian Contributions to Zoology . 131 (131): 1–18. doi :10.5479/si.00810282.131. S2CID 53067015.
^ Baucon, A.; Ronchi, A.; Felletti, F.; Neto de Carvalho, C. (2014). "Эволюция ракообразных на краю кризиса конца перми: анализ ихносети флювиальной последовательности Нурры (пермь-триас, Сардиния, Италия)". Палеогеография, Палеоклиматология, Палеоэкология . 410 : 74. Bibcode : 2014PPP...410...74B. doi : 10.1016/j.palaeo.2014.05.034. Архивировано из оригинала 6 июля 2022 г. Получено 19 мая 2022 г.
^ Tshudy, Dale; Donaldson, W. Steven; Collom, Christopher; et al. (2005). " Hoploparia albertaensis , новый вид клешневидного омара (Nephropidae) из позднекониакской мелководной морской формации Бад-Харт на северо-западе Альберты, Канада". Журнал палеонтологии . 79 (5): 961–968. doi :10.1666/0022-3360(2005)079[0961:HAANSO]2.0.CO;2. S2CID 131067067.
Powers, M., Hill, G., Weaver, R., & Goymann, W. (2020). Экспериментальный тест выбора партнера для определения окраски красного каротиноида у морского веслоногого рачка Tigriopus californicus. Ethology., 126(3), 344–352. Экспериментальный тест выбора партнера для определения окраски красного каротиноида у морского веслоногого рачка Tigriopus californicus
Внешние ссылки
На Викискладе есть медиафайлы по теме «Ракообразные» .
Wikispecies содержит информацию, связанную с ракообразными .