stringtranslate.com

Ранг группы

В математическом предмете теории групп ранг группы G , обозначаемый Rank( G ), может относиться к наименьшей мощности порождающего набора для G , то есть

Если Gконечно порожденная группа , то ранг G — целое неотрицательное число. Понятие ранга группы является теоретико-групповым аналогом понятия размерности векторного пространства . Действительно, для p -групп ранг группы P — это размерность векторного пространства P /Φ( P ), где Φ( P ) — подгруппа Фраттини .

Ранг группы также часто определяется таким образом, чтобы гарантировать, что подгруппы имеют ранг меньше или равный всей группе, что автоматически относится к размерностям векторных пространств, но не к таким группам, как аффинные группы . Чтобы различать эти разные определения, этот ранг иногда называют рангом подгруппы . Явно подгрупповой ранг группы G является максимальным из рангов ее подгрупп:

Иногда ранг подгруппы ограничивается абелевыми подгруппами.

Известные факты и примеры

ранг( L ) - 1 ≤ 2 (ранг ( K ) - 1) (ранг ( H ) - 1).
Этот результат принадлежит Ханне Нойманн . [3] [4] Гипотеза Ханны Нейман утверждает, что на самом деле всегда есть Rank( L ) − 1 ⩽ (rank( K ) − 1)(rank( H ) − 1). Гипотеза Ханны Нейман недавно была решена Игорем Минеевым [5] и независимо анонсирована Джоэлом Фридманом. [6]
ранг( А B ) = ранг( А ) + ранг( B ).

Проблема ранга

В теории групп изучается алгоритмическая проблема , известная как проблема ранга . Проблема заключается в том, существует ли для конкретного класса конечно представленных групп алгоритм, который по конечному представлению группы из класса вычисляет ранг этой группы. Проблема рангов — одна из самых сложных алгоритмических задач, изучаемых в теории групп, и о ней известно относительно мало. Известные результаты включают в себя:

Обобщения и родственные понятия

Ранг конечно порожденной группы G можно эквивалентным образом определить как наименьшую мощность множества X такого , что существует онто- гомоморфизм F ( X ) → G , где F ( X ) — свободная группа со свободным базисом X. Существует двойственное понятие коранга конечно порожденной группы G , определяемое как наибольшая мощность X такая , что существует онто- гомоморфизм GF ( X ). В отличие от ранга, коранг всегда алгоритмически вычислим для конечно представленных групп , [14] с использованием алгоритма Маканина и Разборова для решения систем уравнений в свободных группах. [15] [16] Понятие коранга связано с понятием числа разреза для 3-многообразий . [17]

Если pпростое число , то p - ранг группы G — это наибольший ранг элементарной абелевой p -подгруппы. [18] Секционный p - ранг это наибольший ранг элементарного абелева p -секции (фактора подгруппы).

Смотрите также

Примечания

  1. ^ DJS Робинсон. Курс теории групп , 2-е изд., Тексты для аспирантов по математике 80 (Springer-Verlag, 1996). ISBN  0-387-94461-3
  2. ^ Фридхельм Вальдхаузен. Некоторые задачи о 3-многообразиях. Алгебраическая и геометрическая топология (Proc. Sympos. Pure Math., Стэнфордский университет, Стэнфорд, Калифорния, 1976), часть 2, стр. 313–322, Proc. Симпозиумы. Чистая математика., XXXII, амер. Математика. Soc., Провиденс, Род-Айленд, 1978; ISBN 0-8218-1433-8 
  3. ^ Ханна Нойманн. О пересечении конечно порожденных свободных групп. Publicationes Mathematicae Debrecen , vol. 4 (1956), 186–189.
  4. ^ Ханна Нойманн. О пересечении конечно порожденных свободных групп. Приложение. Publicationes Mathematicae Debrecen, vol. 5 (1957), с. 128
  5. ^ Игорь Миневьев, «Субмультипликативность и гипотеза Ханны Нейман». Анна. матем., 175 (2012), вып. 1, 393–414.
  6. ^ «Пучки на графах и доказательство гипотезы Ханны Нейман». Math.ubc.ca. ​Проверено 12 июня 2012 г.
  7. ^ Вильгельм Магнус , Uber freeie Faktorgruppen und freeie Untergruppen Gegebener Gruppen , Monatshefte für Mathematik, vol. 47 (1939), стр. 307–313.
  8. ^ Роджер К. Линдон и Пол Э. Шупп . Комбинаторная теория групп. Springer-Verlag, Нью-Йорк, 2001. Серия «Классика математики», переиздание издания 1977 года. ISBN 978-3-540-41158-1 ; Предложение 5.11, с. 107 
  9. ^ WW Бун. Проблемы решения алгебраических и логических систем в целом и рекурсивно перечислимые степени неразрешимости. 1968 г. Вклад в математику. Логика (Коллоквиум, Ганновер, 1966), стр. 13 33 Северная Голландия, Амстердам.
  10. ^ Чарльз Ф. Миллер, III. Решение задач для групп — обзор и размышления. Алгоритмы и классификация в комбинаторной теории групп (Беркли, Калифорния, 1989), стр. 1–59, Math. наук. Рез. Инст. Publ., 23, Спрингер, Нью-Йорк, 1992; ISBN 0-387-97685-X 
  11. ^ Джон Леннокс и Дерек Дж. С. Робинсон. Теория бесконечных разрешимых групп. Оксфордские математические монографии. The Clarendon Press, Oxford University Press , Оксфорд, 2004. ISBN 0-19-850728-3 
  12. ^ Г. Баумслаг, К. Ф. Миллер и Х. Шорт. Неразрешимые задачи о малых сокращениях и гиперболических группах слов. Бюллетень Лондонского математического общества, том. 26 (1994), стр. 97–101.
  13. ^ Илья Капович и Рихард Вайдманн. Клейновы группы и проблема рангов. Геометрия и топология , вып. 9 (2005), стр. 375–402.
  14. ^ Джон Р. Столлингс. Проблемы о свободных факторах групп. Геометрическая теория групп (Колумбус, Огайо, 1992), стр. 165–182, Университет штата Огайо. Математика. Рез. Инст. Публикация, 3, де Грюйтер, Берлин, 1995. ISBN 3-11-014743-2. 
  15. ^ А. А. Разборов. Системы уравнений в свободной группе. (на русском языке) Известия Академии наук СССР, Серия Математическая, вып. 48 (1984), вып. 4, стр. 779–832.
  16. ^ Г.С.Маканин Уравнения в свободной группе. (рус.), Известия Академии наук СССР, Серия Математическая, вып. 46 (1982), вып. 6, стр. 1199–1273.
  17. ^ Шелли Л. Харви . О номере разреза 3-многообразия. Геометрия и топология , том. 6 (2002), стр. 409–424.
  18. ^ Ашбахер, М. (2002), Теория конечных групп , Cambridge University Press, стр. 5, ISBN 978-0-521-78675-1