stringtranslate.com

Циклическая перестановка

В математике , и в частности в теории групп , циклическая перестановка — это перестановка, состоящая из одного цикла. [1] [2] В некоторых случаях циклические перестановки называются циклами ; [3] Если циклическая перестановка имеет k элементов, ее можно назвать k -циклом . Некоторые авторы расширяют это определение, включив в него перестановки с неподвижными точками в дополнение не более чем к одному нетривиальному циклу. [3] [4] В обозначениях циклов циклические перестановки обозначаются списком их элементов, заключенным в круглые скобки, в том порядке, в котором они переставляются.

Например, перестановка (1 3 2 4), которая отправляет 1 к 3, 3 к 2, 2 к 4 и 4 к 1, является 4-циклом, а перестановка (1 3 2)(4), которая отправляет 1 к 3 , 3–2, 2–1 и 4–4 некоторые авторы считают 3-циклом. С другой стороны, перестановка (1 3)(2 4), которая переводит 1 в 3, 3 в 1, 2 в 4 и 4 в 2, не является циклической перестановкой, поскольку она отдельно переставляет пары {1, 3} и { 2, 4}.

Множество элементов, не фиксируемых циклической перестановкой, называется орбитой циклической перестановки. [ нужна цитата ] Каждую перестановку на конечном числе элементов можно разложить на циклические перестановки на непересекающихся орбитах.

Отдельные циклические части перестановки также называются циклами , поэтому второй пример состоит из 3-цикла и 1-цикла (или фиксированной точки ), а третий состоит из двух 2-циклов.

Определение

Циклическая перестановка, состоящая из одного 8-цикла.

Не существует единого мнения относительно точного определения циклической перестановки. Некоторые авторы определяют перестановку σ множества X как циклическую, если «при последовательном применении каждый объект перестановленного набора будет последовательно проходить через позиции всех остальных объектов» [1] или, что то же самое, если ее представление в обозначениях цикла состоит одного цикла. [2] Другие дают более либеральное определение, допускающее фиксированные точки. [3] [4]

Непустое подмножество S множества X является циклом , если ограничение на S является циклической перестановкой S. Если X конечно , его циклы не пересекаются , а их объединение есть X. То есть они образуют разбиение , называемое циклическим разложением So. Согласно более разрешающему определению, перестановка X является циклической тогда и только тогда, когда X является ее уникальным циклом.

Например, перестановка, записанная в циклической и двухстрочной записи (двумя способами) как

имеет один 6-цикл и два 1-цикла, диаграмма его цикла показана справа. Некоторые авторы считают эту перестановку циклической, другие - нет.

Перестановка, которая является циклической для расширенного определения, но не для ограниченного, с двумя фиксированными точками (1-циклами) и 6-циклом.

В расширенном определении существуют циклические перестановки, не состоящие из одного цикла.

Более формально, для расширенного определения, перестановка множества X , рассматриваемая как биективная функция , называется циклом, если действие на X подгруппы, порожденной, имеет не более одной орбиты с более чем одним элементом. [5] Это понятие чаще всего используется, когда X — конечное множество; тогда наибольшая орбита S также конечна. Позвольте быть любым элементом S и поставьте для любого . Если S конечно, существует минимальное число, для которого . Тогда , и является перестановкой, определяемой формулой

для 0 ≤ я < к

и для любого элемента . Нефиксированные элементы можно представить как

.

Циклическую перестановку можно записать, используя обозначение компактного цикла (в этом обозначении между элементами нет запятых, чтобы избежать путаницы с k - кортежем ). Длина цикла равна числу элементов его наибольшей орбиты . Цикл длины k также называется k -циклом.

Орбита 1-цикла называется неподвижной точкой перестановки, но как перестановка каждый 1-цикл является тождественной перестановкой . [6] Когда используется обозначение цикла, 1-циклы часто опускаются, чтобы не возникло путаницы. [7]

Основные свойства

Один из основных результатов о симметричных группах состоит в том, что любую перестановку можно выразить как произведение непересекающихся циклов (точнее: циклов с непересекающимися орбитами); такие циклы коммутируют друг с другом, и выражение перестановки уникально с точностью до порядка циклов. [a] Таким образом, мультимножество длин циклов в этом выражении ( тип цикла ) однозначно определяется перестановкой, и ею определяются как сигнатура, так и класс сопряженности перестановки в симметричной группе. [8]

Число k -циклов в симметрической группе Sn определяется при , следующими эквивалентными формулами :

k -цикл имеет сигнатуру (−1) k  − 1 .

Обратный цикл задается изменением порядка записей : . В частности, поскольку , каждый двухцикл является своим обратным. Поскольку непересекающиеся циклы коммутируют, обратное произведение непересекающихся циклов является результатом обращения каждого из циклов в отдельности.

Транспозиции

Матрица _

Цикл, состоящий только из двух элементов, называется транспозицией . Например, перестановка , меняющая местами 2 и 4. Поскольку это 2-цикл, ее можно записать как .

Характеристики

Любую перестановку можно выразить как композицию ( произведение ) транспозиций — формально они являются генераторами группы . [9] Фактически, когда перестановочный набор равен {1, 2, ..., n } для некоторого целого числа n , тогда любая перестановка может быть выражена как произведениесмежные транспозиции и так далее. Это следует из того, что произвольную транспозицию можно выразить как произведение соседних транспозиций. Конкретно, можно выразить транспозицию,перемещая k в l шаг за шагом, а затем перемещая l обратно туда, где было k , что меняет местами эти два и не вносит никаких других изменений:

Разложение перестановки в произведение транспозиций получается, например, путем записи перестановки в виде произведения непересекающихся циклов, а затем итеративного разделения каждого из циклов длины 3 и длиннее на произведение транспозиции и цикла длины один. меньше:

Это означает, что первоначальный запрос состоит в том, чтобы перейти к to и, наконец , к . Вместо этого можно перекатывать элементы, сохраняя их положение, сначала выполнив правильный фактор (как обычно в операторной записи и следуя соглашению в статье « Перестановка »). Это переместилось в положение так, что после первой перестановки элементы и еще не заняли свои окончательные позиции. После этого выполняется транспозиция , затем адреса по индексу, чтобы поменять местами то, что было изначально , и

Фактически, симметрическая группа является группой Кокстера , то есть она порождается элементами порядка 2 (смежными транспозициями), и все отношения имеют определенный вид.

Один из основных результатов о симметричных группах гласит, что либо все разложения данной перестановки в транспозиции имеют четное количество транспозиций, либо все они имеют нечетное количество транспозиций. [10] Это позволяет четности перестановки быть четко определенным понятием.

Смотрите также

Примечания

  1. ^ Обратите внимание, что обозначение цикла не уникально: каждый k -цикл сам по себе может быть записан k разными способами, в зависимости от выбора на его орбите.

Рекомендации

  1. ^ аб Гросс, Джонатан Л. (2008). Комбинаторные методы с компьютерными приложениями . Дискретная математика и ее приложения. Бока-Ратон, Флорида: Chapman & Hall/CRC. п. 29. ISBN 978-1-58488-743-0.
  2. ^ аб Кнут, Дональд Э. (2002). Искусство компьютерного программирования . Аддисон-Уэсли. п. 35.
  3. ^ abc Богарт, Кеннет П. (2000). Вводная комбинаторика (3-е изд.). Лондон: Harcourt Academic Press. п. 554. ИСБН 978-0-12-110830-4.
  4. ^ аб Розен, Кеннет Х. (2000). Справочник по дискретной и комбинаторной математике . Бока-Ратон, Лондон, Нью-Йорк: CRC press. ISBN 978-0-8493-0149-0.
  5. ^ Фрэли 1993, с. 103
  6. ^ Ротман 2006, с. 108
  7. ^ Саган 1991, с. 2
  8. ^ Ротман 2006, с. 117, 121
  9. ^ Ротман 2006, с. 118, п. 2.35.
  10. ^ Ротман 2006, с. 122

Источники

Внешние ссылки

В эту статью включены материалы из цикла PlanetMath , который доступен под лицензией Creative Commons Attribution/Share-Alike License .