Альфа -спираль (или α-спираль ) — это последовательность аминокислот в белке, скрученная в клубок ( спираль ).
Альфа-спираль — наиболее распространенная структурная организация во вторичной структуре белков . Это также самый экстремальный тип локальной структуры, и именно локальная структура легче всего предсказывается из последовательности аминокислот.
Альфа-спираль имеет правостороннюю спиральную конформацию, в которой каждая группа N−H основной цепи образует водородные связи с группой C=O основной цепи аминокислоты , которая находится на четыре остатка ранее в последовательности белка.
Альфа-спираль также обычно называют:
В начале 1930-х годов Уильям Эстбери показал, что при значительном растяжении рентгеновской волоконной дифракции влажных шерстяных или волосяных волокон происходят резкие изменения . Полученные данные свидетельствовали о том, что нерастянутые волокна имеют спиральную молекулярную структуру с характерным повторением ≈5,1 ангстрем (0,51 нанометра ).
Первоначально Эстбери предложил структуру связанных цепей для волокон. Позже он присоединился к другим исследователям (в частности, к американскому химику Морису Хаггинсу ), предложив следующее:
Хотя модели Астбери этих форм были неверны в своих деталях, они были верны по сути и соответствовали современным элементам вторичной структуры , α-спирали и β-цепи (номенклатура Астбери была сохранена), которые были разработаны Лайнусом Полингом , Робертом Кори и Германом Брэнсоном в 1951 году (см. ниже); в этой статье были показаны как право-, так и левозакрученные спирали, хотя в 1960 году кристаллическая структура миоглобина [1] показала, что правозакрученная форма является распространенной. Ганс Нейрат был первым, кто показал, что модели Астбери не могут быть правильными в деталях, поскольку они включали столкновения атомов. [2] Статья Нейрата и данные Астбери вдохновили Х. С. Тейлора , [3] Мориса Хаггинса [4] и Брэгга и соавторов [5] предложить модели кератина , которые несколько напоминают современную α-спираль.
Двумя ключевыми разработками в моделировании современной α-спирали были: правильная геометрия связей, благодаря определениям кристаллической структуры аминокислот и пептидов и предсказанию Полинга плоских пептидных связей ; и его отказ от предположения о целом числе остатков на виток спирали. Поворотный момент наступил ранней весной 1948 года, когда Полинг простудился и лег спать. От скуки он нарисовал полипептидную цепь примерно правильных размеров на полоске бумаги и сложил ее в спираль, стараясь сохранить плоские пептидные связи. После нескольких попыток он создал модель с физически правдоподобными водородными связями. Затем Полинг работал с Кори и Брэнсоном, чтобы подтвердить свою модель перед публикацией. [6] В 1954 году Полингу была присуждена его первая Нобелевская премия «за исследования природы химической связи и ее применение для выяснения структуры сложных веществ» [7] (таких как белки), в частности, структуры α-спирали.
Аминокислоты в α-спирали расположены в правосторонней спиральной структуре, где каждый аминокислотный остаток соответствует повороту спирали на 100° (т. е. спираль имеет 3,6 остатка на поворот) и трансляции на 1,5 Å (0,15 нм) вдоль оси спирали. Дуниц [8] описывает, как первая статья Полинга на эту тему фактически показывает левую спираль, энантиомер истинной структуры. Короткие отрезки левосторонней спирали иногда встречаются с большим содержанием ахиральных аминокислот глицина , но неблагоприятны для других нормальных биологических L -аминокислот . Шаг альфа-спирали (вертикальное расстояние между последовательными витками спирали) составляет 5,4 Å (0,54 нм), что является произведением 1,5 и 3,6. Самое важное то, что группа NH одной аминокислоты образует водородную связь с группой C=O аминокислоты четырьмя остатками ранее; эта повторяющаяся водородная связь i + 4 → i является наиболее заметной характеристикой α-спирали. Официальная международная номенклатура [9] [10] определяет два способа определения α-спиралей, правило 6.2 в терминах повторяющихся углов кручения φ , ψ (см. ниже) и правило 6.3 в терминах комбинированного паттерна шага и водородной связи. α-спирали можно идентифицировать в структуре белка с помощью нескольких вычислительных методов, таких как DSSP (Define Secondary Structure of Protein). [11]
Похожие структуры включают спираль 3 10 ( водородная связь i + 3 → i ) и π-спираль ( водородная связь i + 5 → i ). α-спираль можно описать как спираль 3,6 13 , поскольку расстояние i + 4 добавляет еще три атома к петле с водородными связями по сравнению с более плотной спиралью 3 10 , и в среднем в одном кольце α-спирали задействовано 3,6 аминокислоты. Нижние индексы относятся к числу атомов (включая водород) в замкнутой петле, образованной водородной связью. [12]
Остатки в α-спиралях обычно принимают двугранные углы остова ( φ , ψ ) около (−60°, −45°), как показано на изображении справа. В более общих чертах, они принимают двугранные углы таким образом, что двугранный угол ψ одного остатка и двугранный угол φ следующего остатка в сумме составляют примерно −105°. Как следствие, двугранные углы α-спирали, в общем, попадают на диагональную полосу на диаграмме Рамачандрана (с наклоном −1), варьируясь от (−90°, −15°) до (−70°, −35°). Для сравнения, сумма двугранных углов для спирали 3 10 составляет примерно −75°, тогда как для π-спирали она составляет примерно −130°. Общая формула для угла поворота Ω на остаток любой полипептидной спирали с транс -изомерами задается уравнением [14] [15]
α-спираль плотно упакована; внутри спирали почти нет свободного пространства. Боковые цепи аминокислот находятся снаружи спирали и направлены примерно «вниз» (т. е. к N-концу), как ветви вечнозеленого дерева ( эффект рождественской елки ). Эта направленность иногда используется в предварительных картах электронной плотности с низким разрешением для определения направления остова белка. [16]
Спирали, наблюдаемые в белках, могут иметь длину от четырех до более сорока остатков, но типичная спираль содержит около десяти аминокислот (около трех витков). В целом, короткие полипептиды не демонстрируют значительной α-спиральной структуры в растворе, поскольку энтропийные издержки, связанные со сворачиванием полипептидной цепи, не компенсируются достаточным количеством стабилизирующих взаимодействий. В целом, основные водородные связи α-спиралей считаются немного слабее, чем те, которые обнаруживаются в β-слоях , и легко подвергаются атаке со стороны молекул окружающей воды. Однако в более гидрофобных средах, таких как плазматическая мембрана , или в присутствии сорастворителей, таких как трифторэтанол (ТФЭ), или изолированных от растворителя в газовой фазе [17] , олигопептиды легко принимают стабильную α-спиральную структуру. Кроме того, в пептиды могут быть включены сшивки для конформационной стабилизации спиральных складок. Сшивки стабилизируют спиральное состояние, энтропийно дестабилизируя развернутое состояние и удаляя энтальпийно стабилизированные «ложные» складки, которые конкурируют с полностью спиральным состоянием. [18] Было показано, что α-спирали более стабильны, устойчивы к мутациям и поддаются конструированию, чем β-нити в природных белках, [19] а также в искусственно созданных белках. [20]
Три самых популярных способа визуализации альфа-спиральной вторичной структуры олигопептидных последовательностей: (1) спиральное колесо , [21] (2) диаграмма вэньсян, [22] и (3) спиральная сеть. [23] Каждый из них можно визуализировать с помощью различных программных пакетов и веб-серверов. Для генерации небольшого количества диаграмм можно использовать Heliquest [24] для спиральных колес, а NetWheels [25] для спиральных колес и спиральных сетей. Для программной генерации большого количества диаграмм можно использовать helixvis [26] [27] для рисования спиральных колес и диаграмм вэньсян на языках программирования R и Python.
Поскольку α-спираль определяется ее водородными связями и конформацией остова, наиболее подробные экспериментальные доказательства α-спиральной структуры получены с помощью рентгеновской кристаллографии с атомным разрешением , такой как пример, показанный справа. Очевидно, что все карбонильные кислороды остова направлены вниз (к С-концу), но слегка расходятся, а водородные связи приблизительно параллельны оси спирали. Структуры белков с помощью ЯМР-спектроскопии также хорошо показывают спирали с характерными наблюдениями связей ядерного эффекта Оверхаузера (NOE) между атомами на соседних спиральных витках. В некоторых случаях отдельные водородные связи можно наблюдать непосредственно как небольшую скалярную связь в ЯМР.
Существует несколько методов с более низким разрешением для назначения общей спиральной структуры. Химические сдвиги ЯМР (в частности, C α , C β и C′) и остаточные дипольные связи часто характерны для спиралей. Спектр кругового дихроизма спиралей в дальнем УФ-диапазоне (170–250 нм) также является своеобразным, демонстрируя выраженный двойной минимум около 208 и 222 нм. Инфракрасная спектроскопия используется редко, поскольку спектр α-спирали напоминает спектр случайной катушки (хотя их можно различить, например, с помощью обмена водорода и дейтерия ). Наконец, криоэлектронная микроскопия теперь способна различать отдельные α-спирали внутри белка, хотя их отнесение к остаткам все еще является активной областью исследований.
Длинные гомополимеры аминокислот часто образуют спирали, если они растворимы. Такие длинные изолированные спирали также могут быть обнаружены другими методами, такими как диэлектрическая релаксация , двулучепреломление потока и измерения константы диффузии . Строго говоря, эти методы обнаруживают только характерную вытянутую (длинную сигарообразную) гидродинамическую форму спирали или ее большой дипольный момент .
Различные аминокислотные последовательности имеют разные склонности к формированию α-спиральной структуры. Метионин , аланин , лейцин , глутамат и незаряженный лизин («MALEK» в однобуквенных кодах аминокислот ) имеют особенно высокую склонность к образованию спиралей, тогда как пролин и глицин имеют низкую склонность к образованию спиралей. [28] Пролин либо разрывает, либо изгибает спираль, как потому, что он не может отдавать амидную водородную связь (не имея амидного водорода), так и потому, что его боковая цепь стерически мешает остову предыдущего витка — внутри спирали это вызывает изгиб примерно на 30° по оси спирали. [12] Однако пролин часто рассматривается как первый остаток спирали, предполагается, что это связано с его структурной жесткостью. С другой стороны, глицин также имеет тенденцию разрушать спирали, поскольку его высокая конформационная гибкость делает энтропийно затратным принятие относительно ограниченной α-спиральной структуры.
Оценочные различия в изменении свободной энергии , Δ(Δ G ), оцененные в ккал/моль на остаток в α-спиральной конфигурации относительно аланина, произвольно принятого за ноль. Более высокие числа (более положительные изменения свободной энергии) менее предпочтительны. Возможны значительные отклонения от этих средних чисел в зависимости от идентичности соседних остатков.
Спираль имеет общий дипольный момент из-за совокупного эффекта отдельных микродиполей из карбонильных групп пептидной связи, направленных вдоль оси спирали. [30] Эффекты этого макродиполя являются предметом некоторых споров. α-спирали часто встречаются с N-концом, связанным отрицательно заряженной группой, иногда боковой цепью аминокислоты, такой как глутамат или аспартат , или иногда ионом фосфата. Некоторые считают, что макродиполь спирали взаимодействует электростатически с такими группами. Другие считают, что это вводит в заблуждение, и более реалистично сказать, что потенциал водородной связи свободных групп NH на N-конце α-спирали может быть удовлетворен водородной связью; это также можно рассматривать как набор взаимодействий между локальными микродиполями, такими как C=O···H−N . [31] [32]
Спиральные α-спирали представляют собой высокостабильные формы, в которых две или более спиралей обертываются друг вокруг друга в структуре «суперспирали». Спиральные спирали содержат весьма характерный мотив последовательности , известный как повтор гептады , в котором мотив повторяется каждые семь остатков вдоль последовательности ( аминокислотные остатки, а не пары оснований ДНК). Первый и особенно четвертый остатки (известные как позиции a и d ) почти всегда гидрофобны ; четвертый остаток, как правило, лейцин — это дает начало названию структурного мотива, называемого лейциновой молнией , который является типом спиральной спирали. Эти гидрофобные остатки упаковываются вместе внутри спирального пучка. В общем, пятый и седьмой остатки ( позиции e и g ) имеют противоположные заряды и образуют солевой мостик, стабилизированный электростатическими взаимодействиями. Фибриллярные белки, такие как кератин или «стебли» миозина или кинезина, часто принимают спирально-спиральные структуры, как и несколько димеризующихся белков. Пара спирально-спиральных пучков — пучок из четырех спиралей — является очень распространенным структурным мотивом в белках. Например, он встречается в гормоне роста человека и нескольких разновидностях цитохрома . Белок Rop , который способствует репликации плазмиды у бактерий, представляет собой интересный случай, в котором один полипептид образует спирально-спиральную структуру, а два мономера собираются, образуя пучок из четырех спиралей.
Аминокислоты, составляющие определенную спираль, можно изобразить на спиральном колесе , представлении, которое иллюстрирует ориентацию составляющих аминокислот (см. статью о лейциновой молнии для такой диаграммы). Часто в глобулярных белках , а также в специализированных структурах, таких как спиральные спирали и лейциновые молнии , α-спираль будет иметь две «грани» — одну, содержащую преимущественно гидрофобные аминокислоты, ориентированные внутрь белка, в гидрофобном ядре , и другую, содержащую преимущественно полярные аминокислоты, ориентированные к поверхности белка, открытой для растворителя .
Изменения в ориентации связывания также происходят для лицевидно-организованных олигопептидов. Эта модель особенно распространена в антимикробных пептидах , и было разработано много моделей для описания того, как это связано с их функцией. Общим для многих из них является то, что гидрофобная поверхность антимикробного пептида образует поры в плазматической мембране после ассоциации с жирными цепями в ядре мембраны. [33] [34]
Миоглобин и гемоглобин , первые два белка, структуры которых были решены с помощью рентгеновской кристаллографии , имеют очень похожие складки, состоящие примерно из 70% α-спирали, а остальное — неповторяющиеся области или «петли», соединяющие спирали. При классификации белков по их доминирующей складке база данных Structural Classification of Proteins поддерживает большую категорию специально для всех α-белков.
Гемоглобин имеет еще более масштабную четвертичную структуру , в которой функциональная молекула, связывающая кислород, состоит из четырех субъединиц.
α-спирали имеют особое значение в мотивах связывания ДНК , включая мотивы спираль-поворот-спираль , мотивы лейциновой молнии и мотивы цинкового пальца . Это связано с удобным структурным фактом, что диаметр α-спирали составляет около 12 Å (1,2 нм), включая средний набор боковых цепей, что примерно соответствует ширине большой бороздки в B-форме ДНК , а также с тем, что димеры спиралей типа спираль-спираль (или лейциновая молния) могут легко позиционировать пару поверхностей взаимодействия для контакта с симметричным повтором, обычным для двухспиральной ДНК. [35] Примером обоих аспектов является фактор транскрипции Max (см. изображение слева), который использует спиральную спираль для димеризации, позиционируя другую пару спиралей для взаимодействия в двух последовательных витках большой бороздки ДНК.
α-спирали также являются наиболее распространенным элементом структуры белка, который пересекает биологические мембраны ( трансмембранный белок ), [36] предполагается, что спиральная структура может удовлетворить все водородные связи остова внутри, не оставляя полярных групп открытыми для мембраны, если боковые цепи гидрофобны. Белки иногда закреплены одной спиралью, охватывающей мембрану, иногда парой, а иногда пучком спиралей, наиболее классически состоящим из семи спиралей, расположенных вверх и вниз в кольце, как для родопсинов (см. изображение справа) и других рецепторов, сопряженных с G-белком (GPCR). Структурная стабильность между парами α-спиральных трансмембранных доменов зависит от консервативных мотивов межспиральной упаковки мембраны, например, мотива Глицин-xxx-Глицин (или small-xxx-small). [37]
α-Спирали при осевой деформации растяжения, характерном состоянии нагрузки, которое появляется во многих филаментах и тканях, богатых альфа-спиралями, приводит к характерному трехфазному поведению жесткого-мягкого-жесткого касательного модуля. [38] Фаза I соответствует режиму малой деформации, во время которого спираль растягивается однородно, за ней следует фаза II, в которой альфа-спиральные витки разрываются, опосредованно разрывая группы водородных связей. Фаза III обычно связана с растяжением ковалентных связей с большой деформацией.
Альфа-спирали в белках могут иметь низкочастотное движение, подобное гармошке, что наблюдается с помощью спектроскопии Рамана [39] и анализируется с помощью модели квазиконтинуума. [40] [41] Спирали, не стабилизированные третичными взаимодействиями, демонстрируют динамическое поведение, которое можно в основном отнести к растрескиванию спиралей с концов. [42]
Гомополимеры аминокислот (такие как полилизин ) могут принимать α-спиральную структуру при низкой температуре, которая «плавится» при высокой температуре. Этот переход спираль-клубок когда-то считался аналогичным денатурации белка . Статистическую механику этого перехода можно смоделировать с помощью элегантного метода матрицы переноса , характеризующегося двумя параметрами: склонностью к инициированию спирали и склонностью к удлинению спирали.
По крайней мере пять художников открыто ссылались на α-спираль в своих работах: Джули Ньюдолл в живописи и Джулиан Фосс-Андреа , Батшеба Гроссман , Байрон Рубин и Майк Тика в скульптуре.
Художница из Сан-Франциско Джули Ньюдолл [43] , имеющая степень по микробиологии и дополнительную специальность по искусству, с 1990 года специализируется на картинах, вдохновленных микроскопическими изображениями и молекулами. На ее картине «Восход альфа-спирали» (2003) изображены человеческие фигуры, расположенные в α-спиральной конфигурации. По словам художницы, «цветы отражают различные типы боковых цепей, которые каждая аминокислота протягивает миру». [43] Та же метафора повторяется и со стороны ученого: «β-слои не показывают жесткой повторяющейся регулярности, а текут в изящных, извилистых кривых, и даже α-спираль регулярна скорее как стебель цветка, чьи разветвленные узлы показывают влияние окружающей среды, историю развития и эволюцию каждой части, чтобы соответствовать ее собственной идиосинкразической функции». [12]
Джулиан Фосс-Андреа — скульптор немецкого происхождения, имеющий степени в области экспериментальной физики и скульптуры. С 2001 года Фосс-Андреа создает «белковые скульптуры» [44], основанные на структуре белка, причем α-спираль является одним из его любимых объектов. Фосс-Андреа создавал скульптуры α-спирали из различных материалов, включая бамбук и целые деревья. Памятник, созданный Фоссом-Андреа в 2004 году в память о Лайнусе Полинге , первооткрывателе α-спирали, выполнен из большой стальной балки, перестроенной в структуру α-спирали. 10-футовая (3 м) ярко-красная скульптура стоит перед домом детства Полинга в Портленде, штат Орегон .
Ленточные диаграммы α-спиралей являются важным элементом в лазерной гравировке кристаллических скульптур белковых структур, созданных художницей Батшебой Гроссман , таких как инсулин , гемоглобин и ДНК-полимераза . [45] Байрон Рубин — бывший кристаллограф белков, а теперь профессиональный скульптор по металлу белков, нуклеиновых кислот и молекул лекарственных препаратов, многие из которых содержат α-спирали, такие как субтилизин , гормон роста человека и фосфолипаза А2 . [46]
Майк Тайка — вычислительный биохимик из Вашингтонского университета, работающий с Дэвидом Бейкером . Тайка с 2010 года создает скульптуры белковых молекул из меди и стали, включая убиквитин и тетрамер калиевого канала . [47]