stringtranslate.com

Глия

Глия , также называемая глиальными клетками (глиоцитами) или нейроглией , представляет собой ненейрональные клетки центральной нервной системы ( головной и спинной мозг ) и периферической нервной системы , которые не производят электрические импульсы. Нейроглия составляет более половины объема нервной ткани в нашем организме. [1] Они поддерживают гомеостаз , образуют миелин в периферической нервной системе и обеспечивают поддержку и защиту нейронов . [2] В центральной нервной системе к глиальным клеткам относятся олигодендроциты , астроциты , эпендимальные клетки и микроглия , а в периферической нервной системе к ним относятся шванновские клетки и сателлитные клетки .

Функция

У них есть четыре основные функции:

Они также играют роль в нейротрансмиссии и синаптических связях [3] , а также в физиологических процессах, таких как дыхание . [4] [5] [6] Хотя считалось, что численность глии превышает численность нейронов в соотношении 10:1, недавние исследования с использованием более новых методов и переоценка исторических количественных данных позволяют предположить, что общее соотношение составляет менее 1:1, со значительными различиями между различные ткани мозга. [7] [8]

Глиальные клетки обладают гораздо большим клеточным разнообразием и функциями, чем нейроны, и глиальные клетки могут реагировать на нейротрансмиссию и манипулировать ею разными способами. Кроме того, они могут влиять как на сохранение, так и на консолидацию воспоминаний . [1]

Глия была открыта в 1856 году патологом Рудольфом Вирховым в поисках «соединительной ткани» в мозге. [9] Этот термин происходит от греческого γλία и γλοία «клей» [10] ( английский: / ˈ ɡ l ə / или / ˈ ɡ l ə / ), и наводит на мысль о том, что они были клеем нервной системы . система .

Типы

Нейроглия головного мозга, показанная методом Гольджи
Астроциты можно идентифицировать в культуре, поскольку, в отличие от других зрелых глиальных клеток, они экспрессируют глиальный фибриллярный кислый белок (GFAP).
Глиальные клетки мозга крысы, окрашенные антителом против GFAP
Различные типы нейроглии

Макроглия

Получается из эктодермальной ткани.

Микроглия

Микроглия — специализированные макрофаги , способные к фагоцитозу , защищающие нейроны центральной нервной системы . [22] Они происходят из самой ранней волны мононуклеарных клеток, которые возникают в островках крови желточного мешка на ранних стадиях развития и колонизируют мозг вскоре после того, как нейрональные предшественники начинают дифференцироваться. [23]

Эти клетки обнаруживаются во всех областях головного и спинного мозга. Клетки микроглии небольшие по сравнению с клетками макроглии, имеют меняющуюся форму и продолговатые ядра. Они подвижны внутри мозга и размножаются при повреждении мозга. В здоровой центральной нервной системе процессы микроглии постоянно анализируют все аспекты окружающей среды (нейроны, макроглия и кровеносные сосуды). В здоровом мозге микроглия направляет иммунный ответ на повреждение головного мозга и играет важную роль в воспалении, которое сопровождает повреждение. Многие заболевания и расстройства связаны с дефицитом микроглии, например, болезнь Альцгеймера , болезнь Паркинсона и БАС .

Другой

Питуициты задней доли гипофиза представляют собой глиальные клетки с характеристиками, общими с астроцитами. [24] Танициты в срединном возвышении гипоталамуса представляют собой тип эпендимальных клеток , которые спускаются из радиальной глии и выстилают основание третьего желудочка . [25] Drosophila melanogaster , плодовая мушка, содержит множество типов глии, которые функционально сходны с глией млекопитающих, но, тем не менее, классифицируются по-разному. [26]

Общее число

В целом нейроглиальные клетки меньше нейронов. В человеческом мозге около 85 миллиардов глиальных клеток, [8] примерно столько же, сколько нейронов. [8] Глиальные клетки составляют около половины общего объема головного и спинного мозга. [27] Соотношение глии и нейронов варьируется от одной части мозга к другой. Соотношение глии и нейронов в коре головного мозга составляет 3,72 (60,84 миллиарда глии (72%); 16,34 миллиарда нейронов), тогда как в мозжечке — всего 0,23 (16,04 миллиарда глии; 69,03 миллиарда нейронов). Соотношение серого вещества коры головного мозга составляет 1,48, а серого и белого вещества вместе взятых — 3,76. [27] Соотношение базальных ганглиев, промежуточного мозга и ствола мозга вместе взятое составляет 11,35. [27]

Общее количество глиальных клеток в мозге человека распределяется по разным типам, причем наиболее часто встречаются олигодендроциты (45–75%), за ними следуют астроциты (19–40%) и микроглия (около 10% и менее). [8]

Разработка

Астроциты культуры мозга плода на 23 неделе

Большая часть глии происходит из эктодермальной ткани развивающегося эмбриона , в частности, из нервной трубки и гребня . Исключением является микроглия , которая происходит из гемопоэтических стволовых клеток . У взрослых микроглия в значительной степени представляет собой самообновляющуюся популяцию и отличается от макрофагов и моноцитов, которые проникают в поврежденную и больную ЦНС.

В ЦНС из желудочковой зоны нервной трубки развивается глия. К этой глии относятся олигодендроциты, эпендимальные клетки и астроциты. В периферической нервной системе глия происходит из нервного гребня. Эта глия ПНС включает шванновские клетки в нервах и сателлитные глиальные клетки в ганглиях.

Способность делить

Глия сохраняет способность подвергаться делению клеток во взрослом возрасте, тогда как большинство нейронов не могут. Эта точка зрения основана на общей неспособности зрелой нервной системы замещать нейроны после травмы, такой как инсульт или травма, при которой очень часто наблюдается значительная пролиферация глии или глиоз вблизи или в месте повреждения. Однако детальные исследования не обнаружили никаких доказательств того, что «зрелая» глия, такая как астроциты или олигодендроциты , сохраняет митотическую способность. По-видимому , только резидентные клетки-предшественники олигодендроцитов сохраняют эту способность после созревания нервной системы.

Известно, что глиальные клетки способны к митозу . Напротив, научное понимание того, находятся ли нейроны в постоянном постмитотическом состоянии [28] или способны к митозу [29] [30] [31] все еще развивается. В прошлом глия считалась [ кем? ] отсутствовать определенные особенности нейронов. Например, считалось, что глиальные клетки не имеют химических синапсов и не выделяют медиаторов . Их считали пассивными свидетелями нейронной передачи. Однако недавние исследования показали, что это не совсем так. [32]

Функции

Некоторые глиальные клетки функционируют в первую очередь как физическая поддержка нейронов. Другие обеспечивают питательные вещества нейронам и регулируют внеклеточную жидкость мозга, особенно окружающие нейроны и их синапсы . Во время раннего эмбриогенеза глиальные клетки управляют миграцией нейронов и производят молекулы, которые модифицируют рост аксонов и дендритов . Некоторые глиальные клетки демонстрируют региональное разнообразие в ЦНС, и их функции могут различаться в зависимости от региона ЦНС. [33]

Восстановление и развитие нейронов

Глия играет решающую роль в развитии нервной системы и в таких процессах, как синаптическая пластичность и синаптогенез . Глия играет роль в регуляции восстановления нейронов после травмы. В центральной нервной системе (ЦНС) глия подавляет восстановление. Глиальные клетки, известные как астроциты , увеличиваются и пролиферируют, образуя рубец и производя ингибирующие молекулы, которые препятствуют возобновлению роста поврежденного или разорванного аксона. В периферической нервной системе (ПНС) глиальные клетки, известные как шванновские клетки (или также нейролеммоциты), способствуют восстановлению. После повреждения аксона шванновские клетки регрессируют к более раннему состоянию развития, чтобы стимулировать повторный рост аксона. Эта разница между ЦНС и ПНС вселяет надежду на регенерацию нервной ткани в ЦНС. Например, спинной мозг можно восстановить после травмы или разрыва.

Создание миелиновой оболочки

Олигодендроциты встречаются в ЦНС и напоминают осьминога: у них луковицеобразные клеточные тела с до пятнадцати ветвистых отростков. Каждый отросток достигает аксона и закручивается вокруг него, образуя миелиновую оболочку. Миелиновая оболочка изолирует нервное волокно от внеклеточной жидкости и ускоряет передачу сигнала по нервному волокну. [34] В периферической нервной системе за выработку миелина отвечают шванновские клетки. Эти клетки окутывают нервные волокна ПНС, многократно обвивая их. Этот процесс создает миелиновую оболочку, которая не только способствует проводимости, но и способствует регенерации поврежденных волокон.

нейротрансмиссия

Астроциты являются важными участниками трехстороннего синапса . [35] [36] [37] [38] Они выполняют несколько важнейших функций, включая выведение нейротрансмиттеров из синаптической щели , что помогает различать отдельные потенциалы действия и предотвращает накопление токсических веществ определенных нейротрансмиттеров, таких как глутамат , который в противном случае это привело бы к эксайтотоксичности . Кроме того, астроциты высвобождают глиотрансмиттеры , такие как глутамат, АТФ и D-серин, в ответ на стимуляцию. [39]

Клиническое значение

Неопластические глиальные клетки, окрашенные антителами против GFAP (коричневые), из биопсии головного мозга.

Хотя глиальные клетки в ПНС часто способствуют регенерации утраченных функций нейронов, потеря нейронов в ЦНС не приводит к аналогичной реакции со стороны нейроглии. [18] В ЦНС восстановление роста произойдет только в том случае, если травма была легкой, а не тяжелой. [40] Когда возникает тяжелая травма, оптимальным решением становится выживание оставшихся нейронов. Однако некоторые исследования, изучающие роль глиальных клеток в болезни Альцгеймера , начинают противоречить полезности этого свойства и даже заявляют, что оно может «усугубить» болезнь. [41] Помимо воздействия на потенциальное восстановление нейронов при болезни Альцгеймера, рубцевание и воспаление глиальных клеток также участвуют в дегенерации нейронов, вызванной боковым амиотрофическим склерозом . [42]

Помимо нейродегенеративных заболеваний, к конечному результату физического повреждения ЦНС может привести широкий спектр вредных воздействий, таких как гипоксия или физическая травма. [40] Обычно, когда происходит повреждение ЦНС, глиальные клетки вызывают апоптоз окружающих клеточных тел. [40] Затем возникает большая активность микроглии , что приводит к воспалению, и, наконец, происходит сильное высвобождение молекул, ингибирующих рост. [40]

История

Хотя глиальные клетки и нейроны, вероятно, были впервые обнаружены одновременно в начале 19 века, в отличие от нейронов, морфологические и физиологические свойства которых были непосредственно наблюдаемы первыми исследователями нервной системы, глиальные клетки считались просто «клеем», который удерживал нейроны вместе до середины 20 века. [43]

Глия была впервые описана в 1856 году патологом Рудольфом Вирховым в комментарии к его публикации 1846 года о соединительной ткани. Более подробное описание глиальных клеток было дано в книге того же автора «Клеточная патология» 1858 года. [44]

Когда были проанализированы маркеры различных типов клеток, было обнаружено, что мозг Альберта Эйнштейна содержит значительно больше глии, чем нормальный мозг, в левой угловой извилине , области, которая, как считается, отвечает за математическую обработку и речь. [45] Однако из 28 статистических сравнений между мозгом Эйнштейна и контрольным мозгом обнаружение одного статистически значимого результата неудивительно, а утверждение о том, что мозг Эйнштейна отличается, не является научным (см. Проблема множественных сравнений ). [46]

В процессе эволюции увеличивается не только соотношение глии и нейронов, но и размер глии. Астроглиальные клетки в мозге человека имеют объем в 27 раз больше, чем в мозге мыши. [47]

Эти важные научные открытия могут начать смещать нейроцентрическую перспективу к более целостному представлению о мозге, которое также охватывает глиальные клетки. Большую часть двадцатого века ученые игнорировали глиальные клетки как простые физические каркасы для нейронов. Недавние публикации предположили, что количество глиальных клеток в мозге коррелирует с интеллектом вида. [48] ​​Более того, данные демонстрируют активную роль глии, в частности астроглии, в когнитивных процессах, таких как обучение и память [49] [50] , и по этим причинам было предложено основать специальную область для изучения этих процессов. функций, поскольку исследования в этой области все еще ограничены из-за доминирования нейроцентрической точки зрения. [51]

Смотрите также

Рекомендации

  1. ^ AB Филдс, Р. Дуглас; Арак, Альфонсо; Йохансен-Берг, Хайди; Лим, Су-Сян; Линч, Гэри; Нейв, Клаус-Армин; Недергаард, Майкен; Перес, Рэй; Сейновский, Терренс; Уэйк, Хироаки (октябрь 2014 г.). «Глиальная биология в обучении и познании». Нейробиолог . 20 (5): 426–431. дои : 10.1177/1073858413504465. ISSN  1073-8584. ПМК  4161624 . ПМИД  24122821.
  2. ^ Джессен К.Р., Мирский Р. (август 1980 г.). «Глиальные клетки кишечной нервной системы содержат глиальный фибриллярный кислый белок». Природа . 286 (5774): 736–7. Бибкод : 1980Natur.286..736J. дои : 10.1038/286736a0. PMID  6997753. S2CID  4247900.
  3. ^ Волоскер Х., Думин Э., Балан Л., Фолтин В.Н. (июль 2008 г.). «D-аминокислоты в мозге: D-серин в нейротрансмиссии и нейродегенерации». Журнал ФЭБС . 275 (14): 3514–26. дои : 10.1111/j.1742-4658.2008.06515.x . PMID  18564180. S2CID  25735605.
  4. ^ Сваминатан, Нихил (январь – февраль 2011 г.). «Глия — другие клетки мозга». Обнаружить .
  5. ^ Гурин А.В., Касымов В., Марина Н. и др. (июль 2010 г.). «Астроциты контролируют дыхание посредством pH-зависимого высвобождения АТФ». Наука . 329 (5991): 571–5. Бибкод : 2010Sci...329..571G. дои : 10.1126/science.1190721. ПМК 3160742 . ПМИД  20647426. 
  6. ^ Бельтран-Кастильо С., Оливарес М.Дж., Контрерас Р.А., Суньига Г., Льона И., фон Бернхарди Р. и др. (2017). «D-серин, выделяемый астроцитами ствола мозга, регулирует реакцию дыхания на уровень CO2». Нат Коммун . 8 (1): 838. Бибкод : 2017NatCo...8..838B. дои : 10.1038/s41467-017-00960-3. ПМЦ 5635109 . ПМИД  29018191. 
  7. ^ фон Бартельд, Кристофер С. (ноябрь 2018 г.). «Мифы и правда о клеточном составе человеческого мозга: обзор влиятельных концепций». Журнал химической нейроанатомии . 93 : 2–15. doi :10.1016/j.jchemneu.2017.08.004. ISSN  1873-6300. ПМЦ 5834348 . ПМИД  28873338. 
  8. ^ abcd фон Бартельд, Кристофер С.; Бэнни, Джами; Эркулано-Хузель, Сюзана (15 декабря 2016 г.). «Поиск истинного количества нейронов и глиальных клеток в человеческом мозге: обзор 150-летнего подсчета клеток». Журнал сравнительной неврологии . 524 (18): 3865–3895. дои : 10.1002/cne.24040. ISSN  1096-9861. ПМК 5063692 . ПМИД  27187682. 
  9. ^ "Классические статьи". Сеть Глия . Центр молекулярной медицины Макса Дельбрюка (MDC), Берлин-Бух . Проверено 14 ноября 2015 г.
  10. ^ γλοία, γλία. Лидделл, Генри Джордж ; Скотт, Роберт ; Греко-английский лексикон в проекте «Персей» .
  11. ^ «Корень мысли: что делают глиальные клетки?». Научный американец . 27 октября 2009 г. Проверено 12 июня 2023 г.
  12. ^ Сваминатан, Н. (2008). «Загадка сканирования мозга раскрыта». Научный американский разум . Октябрь–ноябрь (5): 7. doi : 10.1038/scientificamericanmind1008-7b.
  13. ^ Торрес А (2012). «Внеклеточный Ca2+ действует как посредник связи от нейронов к глии». Научная сигнализация . 5 января, 24 (208): 208. doi : 10.1126/scisignal.2002160. ПМЦ 3548660 . ПМИД  22275221. 
  14. ^ Бауманн Н., Фам-Динь Д. (апрель 2001 г.). «Биология олигодендроцитов и миелина в центральной нервной системе млекопитающих». Физиологические обзоры . 81 (2): 871–927. doi : 10.1152/physrev.2001.81.2.871. ПМИД  11274346.
  15. ^ Йоханссон CB, Момма С., Кларк Д.Л., Рислинг М., Лендал Ю., Фрисен Дж. (январь 1999 г.). «Идентификация нервных стволовых клеток в центральной нервной системе взрослых млекопитающих». Клетка . 96 (1): 25–34. дои : 10.1016/S0092-8674(00)80956-3 . PMID  9989494. S2CID  9658786.
  16. ^ Ньюман EA (октябрь 2003 г.). «Новые роли астроцитов: регуляция синаптической передачи». Тенденции в нейронауках . 26 (10): 536–42. дои : 10.1016/S0166-2236(03)00237-6. PMID  14522146. S2CID  14105472.
  17. ^ Кэмпбелл К., Гетц М. (май 2002 г.). «Радиальная глия: многоцелевые клетки для развития мозга позвоночных». Тенденции в нейронауках . 25 (5): 235–8. дои : 10.1016/s0166-2236(02)02156-2. PMID  11972958. S2CID  41880731.
  18. ^ аб Джессен К.Р., Мирский Р. (сентябрь 2005 г.). «Происхождение и развитие глиальных клеток периферических нервов». Обзоры природы. Нейронаука . 6 (9): 671–82. дои : 10.1038/nrn1746. PMID  16136171. S2CID  7540462.
  19. ^ Ханани, М. Сателлитные глиальные клетки в сенсорных ганглиях: от формы к функции. Мозговой Рес. Откр. 48:457–476, 2005 г.
  20. ^ Охара П.Т., Вит Дж.П., Бхаргава А., Жасмин Л. (декабрь 2008 г.). «Доказательства роли коннексина 43 в боли тройничного нерва с использованием РНК-интерференции in vivo». Журнал нейрофизиологии . 100 (6): 3064–73. дои : 10.1152/jn.90722.2008. ПМК 2604845 . ПМИД  18715894. 
  21. ^ Бассотти Дж., Вилланаччи В., Антонелли Э., Морелли А., Салерни Б. (июль 2007 г.). «Клетки кишечной глии: новые игроки в моторике желудочно-кишечного тракта?». Лабораторное исследование . 87 (7): 628–32. дои : 10.1038/labinvest.3700564 . ПМИД  17483847.
  22. ^ Бродал, 2010: с. 19
  23. ^ Никогда не отдыхающая микроглия: физиологическая роль в здоровом мозге и патологические последствия А. Сьерра, М. Е. Трамбле, Х. Уэйк - 2015 - book.google.com
  24. ^ Мията, С; Фуруя, К; Накаи, С; Бун, Х; Киёхара, Т. (апрель 1999 г.). «Морфологическая пластичность и перестройка цитоскелета в питуицитах, культивированных из нейрогипофиза взрослых крыс». Неврологические исследования . 33 (4): 299–306. дои : 10.1016/s0168-0102(99)00021-8. PMID  10401983. S2CID  24687965.
  25. ^ Родригес, EM; Бласкес, JL; Пастор, FE; Пелаес, Б; Пенья, П; Перуццо, Б; Амат, П. (2005). «Гипоталамические танициты: ключевой компонент взаимодействия мозга и эндокринной системы» (PDF) . Международный обзор цитологии . 247 : 89–164. дои : 10.1016/s0074-7696(05)47003-5. hdl : 10366/17544 . ПМИД  16344112.
  26. ^ Фриман, Марк Р. (26 февраля 2015 г.). «Глия центральной нервной системы дрозофилы». Перспективы Колд-Спринг-Харбор в биологии . 7 (11): а020552. doi : 10.1101/cshperspect.a020552 . ISSN  1943-0264. ПМЦ 4632667 . ПМИД  25722465. 
  27. ^ abc Азеведо Ф.А., Карвалью Л.Р., Гринберг Л.Т. и др. (апрель 2009 г.). «Равное количество нейрональных и ненейрональных клеток делает человеческий мозг изометрически увеличенным мозгом примата». Журнал сравнительной неврологии . 513 (5): 532–41. doi : 10.1002/cne.21974. PMID  19226510. S2CID  5200449.
  28. ^ Херруп К., Ян Ю (май 2007 г.). «Регуляция клеточного цикла в постмитотическом нейроне: оксюморон или новая биология?». Обзоры природы. Нейронаука . 8 (5): 368–78. дои : 10.1038/nrn2124. PMID  17453017. S2CID  12908713.
  29. ^ Goldman SA, Nottebohm F (апрель 1983 г.). «Производство, миграция и дифференцировка нейронов в ядре голосового контроля мозга взрослой самки канарейки». Труды Национальной академии наук Соединенных Штатов Америки . 80 (8): 2390–4. Бибкод : 1983PNAS...80.2390G. дои : 10.1073/pnas.80.8.2390 . ПМЦ 393826 . ПМИД  6572982. 
  30. ^ Эрикссон П.С., Перфильева Е, Бьорк-Эрикссон Т и др. (ноябрь 1998 г.). «Нейрогенез в гиппокампе взрослого человека». Природная медицина . 4 (11): 1313–7. дои : 10.1038/3305 . ПМИД  9809557.
  31. ^ Гулд Э., Ривз А.Дж., Фаллах М., Танапат П., Гросс К.Г., Фукс Э. (апрель 1999 г.). «Гиппокампальный нейрогенез у взрослых приматов Старого Света». Труды Национальной академии наук Соединенных Штатов Америки . 96 (9): 5263–7. Бибкод : 1999PNAS...96.5263G. дои : 10.1073/pnas.96.9.5263 . ПМК 21852 . ПМИД  10220454. 
  32. ^ Другой мозг, Р. Дуглас Филдс, доктор философии. Саймон и Шустер, 2009 г. [ нужна страница ]
  33. ^ Веркман, Инге Л.; Лентферинк, Деннис Х.; Барон, Виа (09 июля 2020 г.). «Разнообразие макроглии: белые и серые области и связь с ремиелинизацией». Клеточные и молекулярные науки о жизни . 78 (1): 143–171. дои : 10.1007/s00018-020-03586-9 . ISSN  1420-9071. ПМЦ 7867526 . ПМИД  32648004. 
  34. ^ Саладин, К. (2011). Анатомия человека (3-е изд.). МакГроу-Хилл. п. 357. ИСБН 9780071222075.
  35. ^ Ньюман, Эрик А. (2003). «Новые роли астроцитов: регуляция синаптической передачи». Тенденции в нейронауках . 26 (10): 536–542. дои : 10.1016/S0166-2236(03)00237-6. PMID  14522146. S2CID  14105472.
  36. ^ Халасса М.М., Феллин Т., Хейдон П.Г. (2007). «Трехсторонний синапс: роль глиотрансмиссии в здоровье и болезнях». Тенденции Мол Мед . 13 (2): 54–63. doi :10.1016/j.molmed.2006.12.005. ПМИД  17207662.
  37. ^ Переа Г., Наваррете М., Араке А. (2009). «Трехсторонние синапсы: астроциты обрабатывают и контролируют синаптическую информацию». Тенденции нейробиологии . 32 (8): 421–31. doi :10.1016/j.tins.2009.05.001. hdl : 10261/62092. PMID  19615761. S2CID  16355401.
  38. ^ Сантелло М., Кали С., Беззи П. (2012). Глиотрансмиссия и трехсторонний синапс . Достижения экспериментальной медицины и биологии. Том. 970. стр. 307–31. дои : 10.1007/978-3-7091-0932-8_14. ISBN 978-3-7091-0931-1. ПМИД  22351062.
  39. ^ Мартино М., Парпура В., Мотет Дж. П. (2014). «Специфические клеточные механизмы поглощения и высвобождения D-серина в мозге». Передние синаптические нейроны . 6 : 12. дои : 10.3389/fnsyn.2014.00012 . ПМК 4039169 . ПМИД  24910611. 
  40. ^ abcd Пувес, Дейл (2012). Нейронауки 5-е изд . Синауэр Ассошиэйтс. стр. 560–580. ISBN 978-0878936465.
  41. ^ Лопатеги Кабесас, И.; Батиста, А. Эррера; Рол, Г. Пентон (2014). «Papel de la glía en la enfermedad de Alzheimer. Futuras implicaiones terapéuticas». Неврология . 29 (5): 305–309. дои : 10.1016/j.nrl.2012.10.006 . ПМИД  23246214.
  42. ^ Валори, Кьяра Ф.; Брамбилла, Лилиана; Марторана, Франческа; Росси, Даниэла (3 августа 2013 г.). «Многогранная роль глиальных клеток при боковом амиотрофическом склерозе». Клеточные и молекулярные науки о жизни . 71 (2): 287–297. дои : 10.1007/s00018-013-1429-7. ISSN  1420-682X. PMID  23912896. S2CID  14388918.
  43. ^ Фань, Сюэ; Агид, Ив (август 2018 г.). «У истоков истории глии». Нейронаука . 385 : 255–271. doi : 10.1016/j.neuroscience.2018.05.050. PMID  29890289. S2CID  48360939.
  44. ^ Кеттенманн Х, Верхрацкий А (декабрь 2008 г.). «Нейроглия: 150 лет спустя». Тенденции в нейронауках . 31 (12): 653–9. doi :10.1016/j.tins.2008.09.003. PMID  18945498. S2CID  7135630.
  45. Diamond MC, Scheibel AB, Murphy GM Jr, Harvey T, «О мозге учёного: Альберт Эйнштейн», «Экспериментальная неврология 1985; 198–204», дата обращения 18 февраля 2017 г.
  46. ^ Хайнс, Теренс (1 июля 2014 г.). «Нейромифология мозга Эйнштейна». Мозг и познание . 88 : 21–25. дои : 10.1016/j.bandc.2014.04.004. ISSN  0278-2626. PMID  24836969. S2CID  43431697.
  47. ^ Кооб, Эндрю (2009). Корень мысли . ФТ Пресс. п. 186. ИСБН 978-0-13-715171-4.
  48. ^ Ой, Б.Л. «5 причин, почему глиальные клетки были так важны для человеческого интеллекта». Научные мозги . Проверено 5 января 2015 г.
  49. ^ Вольтерра, Андреа; Мелдолези, Якопо (2004). «Квантовое высвобождение передатчика: не только из нейронов, но и из астроцитов?». Нейроглия . стр. 190–201. doi :10.1093/acprof:oso/9780195152227.003.0014. ISBN 978-0-19-515222-7.
  50. ^ Оберхейм, Нэнси Энн; Ван, Сяохай; Голдман, Стивен; Недергаард, Майкен (2006). «Астроцитарная сложность отличает человеческий мозг» (PDF) . Тенденции в нейронауках . 29 (10): 547–553. doi :10.1016/j.tins.2006.08.004. PMID  16938356. S2CID  17945890.
  51. ^ Спадаро, Сальваторе (1 сентября 2015 г.). «На пути к когнитивной глиауке: краткая концептуальная основа». журналjsrr.com . Проверено 12 июня 2023 г.

Библиография

дальнейшее чтение

Внешние ссылки