stringtranslate.com

Облако

Облачный пейзаж над Борнео , снятый Международной космической станцией.

В метеорологии облако — это аэрозоль, состоящий из видимой массы миниатюрных жидких капелек , замороженных кристаллов или других частиц, взвешенных в атмосфере планетарного тела или аналогичного пространства. [1] Вода или различные другие химические вещества могут составлять капли и кристаллы. На Земле облака образуются в результате насыщения воздуха , когда он охлаждается до точки росы или когда он получает достаточно влаги (обычно в виде водяного пара ) из соседнего источника, чтобы поднять точку росы до температуры окружающей среды .

Облака видны в гомосфере Земли , которая включает тропосферу , стратосферу и мезосферу . Нефология — это наука об облаках, которая изучается в разделе физики облаков метеорологии . Существует два метода наименования облаков в соответствующих слоях гомосферы: латинское и общепринятое название .

Типы родов в тропосфере, атмосферном слое, ближайшем к поверхности Земли, имеют латинские названия из-за всеобщего принятия номенклатуры Люка Говарда , которая была официально предложена в 1802 году. Она стала основой современной международной системы, которая делит облака на пять физических форм , которые могут быть далее разделены или классифицированы по уровням высоты , чтобы вывести десять основных родов . Основными репрезентативными типами облаков для каждой из этих форм являются слоистые , кучевые , слоисто-кучевые , кучево-дождевые и усикообразные . Облака низкого уровня не имеют никаких префиксов, связанных с высотой. Однако слоистым и слоисто-кучевым типам среднего уровня присваивается префикс alto-, в то время как высокоуровневые варианты этих же двух форм несут префикс cirro- . В обоих случаях слоистые опускаются из вариантов среднего и высокого уровня, чтобы избежать двойного префикса. Типы родов с достаточной вертикальной протяженностью, чтобы занимать более одного уровня, не имеют никаких префиксов, связанных с высотой. Они классифицируются формально как низко- или среднеуровневые в зависимости от высоты, на которой каждый из них изначально формируется, а также более неформально характеризуются как многоуровневые или вертикальные . Большинство из десяти родов, полученных с помощью этого метода классификации, можно подразделить на виды и далее подразделить на разновидности . Очень низкие слоистообразные облака, которые простираются до поверхности Земли, получили общие названия туман и дымка , но не имеют латинских названий.

В стратосфере и мезосфере облака имеют общие названия для своих основных типов. Они могут иметь вид слоистых вуалей или листов, перистообразных пучков или слоисто-кучевых полос или ряби. Они видны нечасто, в основном в полярных регионах Земли. Облака наблюдались в атмосферах других планет и лун в Солнечной системе и за ее пределами. Однако из-за их различных температурных характеристик они часто состоят из других веществ, таких как метан , аммиак и серная кислота , а также из воды.

Тропосферные облака могут оказывать прямое влияние на изменение климата на Земле. Они могут отражать входящие лучи от Солнца, что может способствовать охлаждающему эффекту там и тогда, когда эти облака возникают, или улавливать более длинноволновое излучение, которое отражается обратно от поверхности Земли, что может вызывать эффект потепления. Высота, форма и толщина облаков являются основными факторами, которые влияют на локальное нагревание или охлаждение Земли и атмосферы. Облака, которые образуются над тропосферой, слишком редки и слишком тонки, чтобы иметь какое-либо влияние на изменение климата. Облака являются основной неопределенностью в чувствительности климата . [2]

Различные облака, увиденные сверху в Японии

Этимология

Облака, видимые из атмосферы Нигерии летом

Происхождение термина «cloud» можно найти в древнеанглийских словах clud или clod , означающих холм или массу камня. Примерно в начале XIII века это слово стало использоваться в качестве метафоры для дождевых облаков из-за внешнего сходства между массой камня и кучевым облаком. Со временем метафорическое использование слова вытеснило древнеанглийское weolcan , которое было буквальным термином для облаков в целом. [3] [4]

Гомосферные номенклатуры и перекрестная классификация

Таблица, которая следует ниже, очень широка по охвату, как и шаблон родов облаков, на котором она частично основана. Существуют некоторые различия в стилях номенклатуры между схемой классификации, используемой для тропосферы (строгая латынь, за исключением аэрозолей на поверхности) и более высокими уровнями гомосферы (общие термины, некоторые неформально получены из латыни). Однако представленные здесь схемы разделяют перекрестную классификацию физических форм и уровней высоты для получения 10 тропосферных родов, [5] тумана и дымки, которые образуются на уровне поверхности, и нескольких дополнительных основных типов над тропосферой. Род кучевых облаков включает четыре вида, которые указывают вертикальный размер, который может влиять на уровни высоты.

История науки об облаках

Древние исследования облаков не проводились изолированно, а наблюдались в сочетании с другими погодными элементами и даже другими естественными науками. Около 340 г. до н. э. греческий философ Аристотель написал Meteorologica , труд, который представлял собой сумму знаний того времени о естественных науках, включая погоду и климат. Впервые осадки и облака, из которых выпадали осадки, были названы метеорами, которые происходят от греческого слова meteoros , что означает «высоко в небе». От этого слова произошел современный термин meteorology , изучение облаков и погоды. Meteorologica была основана на интуиции и простом наблюдении, но не на том, что сейчас считается научным методом. Тем не менее, это была первая известная работа, которая попыталась систематически рассмотреть широкий спектр метеорологических тем, особенно гидрологический цикл . [10]

г
Классификация тропосферных облаков по высоте возникновения. Многоуровневые и вертикальные типы родов не ограничиваются одним уровнем высоты; к ним относятся слоисто-дождевые, кучево-дождевые и некоторые из более крупных видов кучевых облаков.

После столетий спекулятивных теорий о формировании и поведении облаков, первые по-настоящему научные исследования были проведены Люком Говардом в Англии и Жаном-Батистом Ламарком во Франции. Говард был методичным наблюдателем с прочной базой в латинском языке и использовал свое образование для формальной классификации различных типов тропосферных облаков в 1802 году. Он считал, что научные наблюдения за изменением форм облаков в небе могут открыть ключ к прогнозированию погоды.

Ламарк работал независимо над классификацией облаков в том же году и придумал другую схему наименования, которая не произвела впечатления даже в его родной стране Франции, потому что она использовала необычно описательные и неформальные французские названия и фразы для типов облаков. Его система номенклатуры включала 12 категорий облаков с такими названиями, как (в переводе с французского) дымчатые облака, пятнистые облака и облака, похожие на метлу. Напротив, Говард использовал общепринятую латынь, которая быстро вошла в моду после ее публикации в 1803 году. [11] В знак популярности схемы наименования немецкий драматург и поэт Иоганн Вольфганг фон Гете сочинил четыре стихотворения об облаках, посвятив их Говарду.

Разработка системы Говарда была в конечном итоге официально принята Международной метеорологической конференцией в 1891 году. [11] Эта система охватывала только типы тропосферных облаков. Однако открытие облаков над тропосферой в конце 19 века в конечном итоге привело к созданию отдельных схем классификации, которые вернулись к использованию описательных общих названий и фраз, которые несколько напоминали методы классификации Ламарка. Эти очень высокие облака, хотя и классифицированные этими различными методами, тем не менее в целом похожи на некоторые формы облаков, идентифицированные в тропосфере с латинскими названиями. [8]

Формирование

Земные облака можно найти в большей части гомосферы, которая включает тропосферу, стратосферу и мезосферу. Внутри этих слоев атмосферы воздух может стать насыщенным в результате охлаждения до точки росы или при добавлении влаги из соседнего источника. [12] В последнем случае насыщение происходит, когда точка росы повышается до температуры окружающего воздуха.

Адиабатическое охлаждение

Адиабатическое охлаждение происходит, когда один или несколько из трех возможных подъемных агентов — конвективный, циклонический/фронтальный или орографический — заставляют часть воздуха, содержащую невидимый водяной пар, подниматься и охлаждаться до точки росы, температуры, при которой воздух становится насыщенным. Основным механизмом этого процесса является адиабатическое охлаждение. [13] Когда воздух охлаждается до точки росы и становится насыщенным, водяной пар обычно конденсируется, образуя капли облаков. Эта конденсация обычно происходит на ядрах конденсации облаков , таких как частицы соли или пыли, которые достаточно малы, чтобы удерживаться наверху обычной циркуляцией воздуха. [14] [15]

Анимация эволюции облаков от кучевых облаков до кучево-дождевых capillatus incus

Одним из агентов является конвективное восходящее движение воздуха, вызванное дневным солнечным нагревом на уровне поверхности. [14] Нестабильность воздушных масс на низком уровне приводит к образованию кучевых облаков в тропосфере, которые могут вызывать ливни, если воздух достаточно влажный. [16] В сравнительно редких случаях конвективный подъем может быть достаточно мощным, чтобы проникнуть в тропопаузу и вытолкнуть верхнюю часть облака в стратосферу. [17]

Фронтальный и циклонический подъем происходит в тропосфере, когда устойчивый воздух выталкивается вверх на погодных фронтах и ​​вокруг центров низкого давления с помощью процесса, называемого конвергенцией . [18] Теплые фронты , связанные с внетропическими циклонами, как правило, генерируют в основном перисто- и слоистообразные облака на большой площади, если только приближающаяся теплая воздушная масса не является нестабильной, в этом случае кучевые мощные или кучево-дождевые облака обычно встроены в основной слой осаждающих облаков. [19] Холодные фронты обычно движутся быстрее и генерируют более узкую линию облаков, которые в основном слоисто-кучевые, кучево-дождевые или кучево-дождевые в зависимости от стабильности теплой воздушной массы непосредственно перед фронтом. [20]

Ветреные вечерние сумерки, усиленные углом Солнца. Облака могут визуально имитировать торнадо, возникающее из-за орографического подъема.

Третий источник подъемной силы — это циркуляция ветра, которая заставляет воздух преодолевать физическое препятствие, например гору ( орографический подъем ). [14] Если воздух в целом стабилен, не образуется ничего, кроме линзовидных облаков. Однако, если воздух становится достаточно влажным и нестабильным, могут появиться орографические ливни или грозы . [21]

Облака, образованные любым из этих подъемных агентов, изначально видны в тропосфере, где эти агенты наиболее активны. Однако водяной пар, поднятый наверх тропосферы, может переноситься еще выше гравитационными волнами, где дальнейшая конденсация может привести к образованию облаков в стратосфере и мезосфере. [22]

Неадиабатическое охлаждение

Наряду с адиабатическим охлаждением, требующим подъемного агента, существуют три основных неадиабатических механизма для понижения температуры воздуха до точки росы. Кондуктивное, радиационное и испарительное охлаждение не требуют подъемного механизма и могут вызывать конденсацию на уровне поверхности, что приводит к образованию тумана . [23] [24] [25]

Увлажнение воздуха

Несколько основных источников водяного пара могут быть добавлены в воздух в качестве способа достижения насыщения без какого-либо процесса охлаждения: испарение с поверхности воды или влажной почвы, [26] [12] [27] осадки или вирга , [28] и транспирация растений. [29]

Тропосферная классификация

Классификация в тропосфере основана на иерархии категорий, на вершине которой находятся физические формы и уровни высоты. [6] [7] Они перекрестно классифицируются в общей сложности в десять типов родов, большинство из которых можно разделить на виды и далее подразделить на разновидности, которые находятся в нижней части иерархии. [30]

Перистые волокнистые облака в марте

Облака в тропосфере принимают пять физических форм, основанных на структуре и процессе формирования. Эти формы обычно используются для целей спутникового анализа. [31] Они приведены ниже в приблизительном порядке возрастания нестабильности или конвективной активности. [32]

Уровни и роды

Тропосферные облака формируются на любом из трех уровней (ранее называвшихся этажами) в зависимости от диапазона высот над поверхностью Земли. Группировка облаков в уровни обычно выполняется для целей атласов облаков , наблюдений за погодой на поверхности [7] и карт погоды . [40] Диапазон базовой высоты для каждого уровня варьируется в зависимости от широтной географической зоны . [7] Каждый уровень высоты включает два или три типа родов, различающихся в основном по физической форме. [41] [5]

Стандартные уровни и типы родов суммированы ниже в приблизительном порядке убывания высоты, на которой каждый из них обычно находится. [42] Многоуровневые облака со значительной вертикальной протяженностью перечислены отдельно и суммированы в приблизительном порядке возрастания нестабильности или конвективной активности. [32]

Высокий уровень

Высокие перистые облака вверху слева, переходящие в перисто-слоистые облака справа и некоторые перисто-кучевые облака далеко справа.

Высокие облака образуются на высоте от 3000 до 7600 м (от 10000 до 25000 футов) в полярных регионах , от 5000 до 12200 м (от 16500 до 40000 футов) в умеренных регионах и от 6100 до 18300 м (от 20000 до 60000 футов) в тропиках . [7] Все усикообразные облака классифицируются как высокие, таким образом, составляют один род перистые (Ci). Слоисто-кучевые и слоистообразные облака в диапазоне больших высот носят префикс cirro- , что дает соответствующие названия рода cirrocumulus (Cc) и cirrostratus (Cs). Если анализировать спутниковые снимки высоких облаков с ограниченным разрешением без дополнительных данных прямых человеческих наблюдений, то различение отдельных форм или типов родов становится невозможным, и все они в совокупности определяются как облака высокого типа (или неформально как облака перистого типа , хотя не все высокие облака относятся к форме или роду перистых облаков). [43]

Средний уровень

Сцена восхода солнца, освещающая высококучевые слоисто-перлюцидные облака
Altostratus translucidus в верхней части фотографии, сгущающийся до altostratus opacus в нижней части (см. также «виды и разновидности»)

Невертикальные облака в среднем ярусе имеют префикс alto- , что дает названия родов altocumulus (Ac) для слоисто-кучевых типов и altostratus (As) для слоисто-слоистых типов. Эти облака могут образовываться на высоте до 2000 м (6500 футов) над поверхностью на любой широте, но могут базироваться на высоте до 4000 м (13000 футов) вблизи полюсов, 7000 м (23000 футов) на средних широтах и ​​7600 м (25000 футов) в тропиках. [7] Как и в случае с высокими облаками, основные типы родов легко идентифицируются человеческим глазом, но различить их с помощью только спутниковой фотографии невозможно. Когда поддерживающие данные человеческих наблюдений недоступны, эти облака обычно коллективно идентифицируются как облака среднего типа на спутниковых снимках. [43]

Низкий уровень

Кучевые облака с кучевыми облаками слоисто-слоистыми на переднем плане (см. также «виды и разновидности»)
Кучевые облака в мае

Низкие облака находятся от поверхности до 2000 м (6500 футов). [7] Типы родов на этом уровне либо не имеют префикса, либо имеют префикс, который относится к характеристике, отличной от высоты. Облака, которые образуются на нижнем уровне тропосферы, как правило, имеют более крупную структуру, чем те, которые образуются на среднем и высоком уровнях, поэтому их обычно можно идентифицировать по их формам и типам родов, используя только спутниковую фотографию. [43]

Многоуровневый или умеренно вертикальный

Слоисто-дождевые облака с Девой

Основания этих облаков располагаются на низком или среднем уровне и формируются на высоте от поверхности до 2400 м (8000 футов), а их вершины могут достигать средних высот, а иногда и выше в случае слоисто-дождевых облаков.

Возвышающаяся вертикаль

Изолированные кучево-дождевые облака над пустыней Мохаве , вызывающие сильный ливень
Одноклеточные Cumulonimbus capillatus incus

Эти очень крупные кучевые и кучево-дождевые типы имеют основания облаков в том же диапазоне от низкого до среднего уровня, что и многоуровневые и умеренные вертикальные типы, но вершины почти всегда простираются до высоких уровней. В отличие от менее вертикально развитых облаков, они должны быть идентифицированы по их стандартным названиям или аббревиатурам во всех авиационных наблюдениях (METARS) и прогнозах (TAFS), чтобы предупредить пилотов о возможной суровой погоде и турбулентности. [9]

Разновидность

Типы родов обычно делятся на подтипы, называемые видами , которые указывают на конкретные структурные детали, которые могут меняться в зависимости от стабильности и характеристик сдвига ветра атмосферы в любое заданное время и местоположении. Несмотря на эту иерархию, конкретный вид может быть подтипом более чем одного рода, особенно если роды имеют одну и ту же физическую форму и отличаются друг от друга в основном высотой или уровнем. Существует несколько видов, каждый из которых может быть связан с родами более чем одной физической формы. [74] Типы видов сгруппированы ниже в соответствии с физическими формами и родами, с которыми каждый из них обычно связан. Формы, роды и виды перечислены слева направо в приблизительном порядке возрастания нестабильности или конвективной активности. [32]

Стабильный или в основном стабильный

Из неконвективной стратифицированной группы высокоуровневые перисто-слоистые облака включают два вида. Cirrostratus nebulosus имеет довольно диффузный вид, лишенный структурных деталей. [75] Cirrostratus fibratus — это вид, состоящий из полуслитых нитей, которые являются переходными к перистым облакам или от них. [76] Среднеуровневые высокослоистые и многоуровневые слоисто-дождевые облака всегда имеют плоский или диффузный вид и поэтому не подразделяются на виды. Низкоуровневые слоистые облака относятся к виду nebulosus [75], за исключением случаев, когда они разбиты на рваные слои stratus fractus (см. ниже). [62] [74] [77]

Усикообразные облака имеют три неконвективных вида, которые могут формироваться в стабильных условиях воздушных масс. Cirrus fibratus состоят из нитей, которые могут быть прямыми, волнистыми или иногда скрученными сдвигом ветра. [76] Вид uncinus похож, но имеет загнутые вверх крючки на концах. Cirrus spissatus выглядят как непрозрачные пятна, которые могут иметь светло-серую штриховку. [74]

Высококучевые чечевицеобразные облака формируются над горами в Вайоминге с нижним слоем средних кучевых облаков и верхним слоем плотных перистых облаков.

Слоисто-кучевые облака (перисто-кучевые, высококучевые и слоисто-кучевые), которые появляются в основном в стабильном воздухе с ограниченной конвекцией, имеют по два вида каждый. Слоисто- кучевые облака обычно встречаются в обширных слоях или на небольших участках, где наблюдается только минимальная конвективная активность. [78] Облака лентикулярного типа, как правило, имеют линзообразную форму, сужающуюся на концах. Они чаще всего видны как орографические облака горной волны , но могут встречаться в любом месте тропосферы, где есть сильный сдвиг ветра в сочетании с достаточной стабильностью воздушной массы для поддержания в целом плоской структуры облаков. Эти два вида можно найти в высоких, средних или низких уровнях тропосферы в зависимости от слоисто-кучевого рода или родов, присутствующих в любой момент времени. [62] [74] [77]

Рваный

Вид fractus демонстрирует переменную нестабильность, поскольку он может быть подразделением родовых типов различных физических форм, которые имеют различные характеристики стабильности. Этот подтип может быть в форме рваных, но в основном стабильных слоистых слоев (stratus fractus) или небольших рваных кучевых куч с несколько большей нестабильностью (cumulus fractus). [74] [77] [79] Когда облака этого вида связаны с осадочными облачными системами значительной вертикальной и иногда горизонтальной протяженности, они также классифицируются как вспомогательные облака под названием pannus (см. раздел о дополнительных признаках). [80]

Частично нестабильный

Пример формирования облака Кастелланус

Эти виды являются подразделениями типов родов, которые могут встречаться в частично нестабильном воздухе с ограниченной конвекцией . Вид castellanus появляется, когда в основном стабильный слоисто-кучевой или усикообразный слой нарушается локализованными областями нестабильности воздушных масс, обычно утром или днем. Это приводит к образованию вложенных кучевых наростов, возникающих из общего слоистого основания. [81] Castellanus напоминает башни замка, если смотреть сбоку, и может быть обнаружен вместе с родами слоисто-кучевых облаков на любом уровне высоты тропосферы и с ограниченными конвективными участками перистых облаков высокого уровня. [82] Клочковатые облака более обособленных видов floccus являются подразделениями типов родов, которые могут быть усикообразными или слоисто-кучевыми по общей структуре. Иногда их можно увидеть вместе с перистыми, перисто-кучевыми, высококучевыми и слоисто-кучевыми облаками. [83]

Недавно признанный вид слоисто-кучевых или высококучевых облаков получил название volutus , рулонное облако, которое может возникнуть перед образованием кучево-дождевых облаков. [84] Существуют некоторые облака volutus, которые образуются в результате взаимодействия с определенными географическими объектами, а не с родительским облаком. Возможно, самым странным географически определенным облаком этого типа является Morning Glory , рулонное цилиндрическое облако, которое непредсказуемо появляется над заливом Карпентария в Северной Австралии . Связанное с мощной «рябью» в атмосфере, облако может «скользить» на планерах . [85]

Нестабильный или в основном нестабильный

Более общая нестабильность воздушных масс в тропосфере имеет тенденцию производить облака более свободно конвективного типа кучевых облаков, виды которых в основном являются индикаторами степеней атмосферной нестабильности и результирующего вертикального развития облаков. Кучевое облако изначально формируется на нижнем уровне тропосферы как облачко вида humilis , которое показывает лишь незначительное вертикальное развитие. Если воздух становится более нестабильным, облако имеет тенденцию расти вертикально в вид mediocris , затем в сильно конвективный congestus , самый высокий вид кучевых облаков [74] , который является тем же типом, который Международная организация гражданской авиации называет «башнеобразными кучевыми облаками». [9]

Кучевые облака среднего размера, которые вот-вот превратятся в кучевые облака мощные

При крайне нестабильных атмосферных условиях крупные кучевые облака могут продолжать расти, переходя в еще более сильно конвективные кучево-дождевые кавальвусы (по сути, очень высокие мощные облака, вызывающие гром), а затем в конечном итоге в вид капиллярных облаков , когда переохлажденные капли воды в верхней части облака превращаются в ледяные кристаллы, придавая ему усикообразный вид. [74] [77]

Разновидности

Типы родов и видов далее подразделяются на разновидности , названия которых могут появляться после названия вида, чтобы обеспечить более полное описание облака. Некоторые разновидности облаков не ограничены определенным уровнем высоты или формой и, следовательно, могут быть общими для более чем одного рода или вида. [86]

На основе непрозрачности

Слой слоисто-кучевых облаков, стратифицированных перлюцидус, скрывает заходящее солнце, а фоновый слой слоисто-кучевых облаков, образованных кучевыми облаками, напоминает далекие горы.

Все разновидности облаков попадают в одну из двух основных групп. Одна группа определяет непрозрачность конкретных структур облаков низкого и среднего уровня и включает разновидности translucidus (тонкие полупрозрачные), perlucidus (толстые непрозрачные с полупрозрачными или очень маленькими четкими разрывами) и opacus (толстые непрозрачные). Эти разновидности всегда идентифицируются для родов и видов облаков с переменной непрозрачностью. Все три связаны с видами stratiformis altocumulus и stratocumulus. Однако только две разновидности наблюдаются с altostratus и stratus nebulosus, однородные структуры которых предотвращают образование разновидности perlucidus. Разновидности, основанные на непрозрачности, не применяются к высоким облакам, потому что они всегда полупрозрачны или, в случае cirrus spissatus, всегда непрозрачны. [86] [87]

На основе шаблона

Cirrus fibratus radiatus над обсерваторией Ла Силья Европейской южной обсерватории [88]

Вторая группа описывает случайные расположения облачных структур в определенные узоры, которые различимы наблюдателем, находящимся на поверхности (облачные поля обычно видны только со значительной высоты над образованиями). Эти разновидности не всегда присутствуют с родами и видами, с которыми они в противном случае связаны, но появляются только тогда, когда атмосферные условия благоприятствуют их образованию. Разновидности Intortus и vertebratus иногда встречаются с cirrus fibratus. Они представляют собой соответственно нити, скрученные в неправильные формы, и те, которые расположены в узорах «рыбьего скелета», обычно неравномерными потоками ветра, которые благоприятствуют образованию этих разновидностей. Разновидность radiatus связана с рядами облаков определенного типа, которые, по-видимому, сходятся на горизонте. Иногда ее можно увидеть с видами fibratus и uncinus перистых облаков, видами stratiformis высококучевых и слоисто-кучевых облаков, видами mediocris и иногда humilis кучевых облаков, [89] [ ненадежный источник? ] [90] и с родом altostratus. [91]

Altocumulus stratiformis duplicatus на восходе солнца в пустыне Мохаве в Калифорнии, США (верхний слой — оранжевый до белого; нижний слой — серый)

Другая разновидность, duplicatus (близко расположенные слои одного типа, один над другим), иногда встречается с перистыми облаками как вида fibratus, так и uncinus, а также с высококучевыми и слоисто-кучевыми облаками вида stratiformis и lenticularis. Разновидность undulatus (имеющая волнистое волнистое основание) может встречаться с любыми облаками вида stratiformis или lenticularis, а также с altostratus. Она редко наблюдается со stratus nebulosus. Разновидность lacunosus вызвана локализованными нисходящими потоками, которые создают круглые отверстия в форме сот или сети. Иногда она наблюдается с перисто-кучевыми и высококучевыми облаками вида stratiformis, castellanus и floccus, а также со слоисто-кучевыми облаками вида stratiformis и castellanus. [86] [87]

Комбинации

Некоторые виды могут показывать комбинированные разновидности одновременно, особенно если одна разновидность основана на непрозрачности, а другая — на узоре. Примером этого может служить слой altocumulus stratiformis, организованный в, казалось бы, сходящиеся ряды, разделенные небольшими разрывами. Полное техническое название облака в этой конфигурации будет altocumulus stratiformis radiatus perlucidus , что будет идентифицировать соответственно его род, вид и две комбинированные разновидности. [77] [86] [87]

Другие типы

Облака в горах
Облака в горах

Дополнительные характеристики и вспомогательные облака не являются дальнейшими подразделениями типов облаков ниже уровня видов и разновидностей. Скорее, это либо гидрометеоры , либо особые типы облаков со своими собственными латинскими названиями, которые образуются в связи с определенными родами, видами и разновидностями облаков. [77] [87] Дополнительные характеристики, будь то в форме облаков или осадков, напрямую прикреплены к основному роду-облаку. Вспомогательные облака, напротив, обычно отделены от основного облака. [92]

Дополнительные характеристики на основе осадков

Одна группа дополнительных особенностей не является фактическими облачными образованиями, а осадками, которые выпадают, когда капли воды или ледяные кристаллы, составляющие видимые облака, становятся слишком тяжелыми, чтобы оставаться наверху. Вирга — это особенность, наблюдаемая с облаками, производящими осадки, которые испаряются, не достигнув земли, они относятся к родам перисто-кучевых, высококучевых, высокослоистых, слоисто-дождевых, слоисто-кучевых, кучевых и кучево-дождевых. [92]

Когда осадки достигают земли, не испаряясь полностью, они обозначаются как feature praecipitatio . [93] Обычно это происходит с altostratus opacus, которые могут производить широко распространенные, но обычно слабые осадки, и с более толстыми облаками, которые показывают значительное вертикальное развитие. Из последних, растущие вверх cumulus mediocris производят только изолированные слабые ливни, в то время как растущие вниз nimbostratus способны производить более сильные, более обширные осадки. Возвышающиеся вертикальные облака обладают наибольшей способностью производить интенсивные осадки, но они, как правило, локализованы, если не организованы вдоль быстро движущихся холодных фронтов. Ливни умеренной и сильной интенсивности могут выпадать из cumulus congestus. Cumulonimbus, самый большой из всех родов облаков, обладает способностью производить очень сильные ливни. Низкие слоистые облака обычно производят только слабые осадки, но это всегда происходит как feature praecipitatio из-за того, что этот род облаков лежит слишком близко к земле, чтобы допустить образование virga. [77] [87] [92]

Дополнительные функции на основе облака

Наковальня — наиболее специфичная для типа дополнительная черта, наблюдаемая только у кучево-дождевых облаков вида capillatus. Верхняя часть кучево-дождевого облака наковальня — это облако, которое растянулось в четкую форму наковальни в результате восходящих воздушных потоков, достигающих слоя стабильности в тропопаузе , где воздух больше не продолжает становиться холоднее с увеличением высоты. [94]

Mamma - образная форма формируется на основаниях облаков как направленные вниз пузырькообразные выступы, вызванные локализованными нисходящими потоками внутри облака. Иногда ее также называют mammatus , более ранняя версия термина, использовавшаяся до стандартизации латинской номенклатуры, проведенной Всемирной метеорологической организацией в 20 веке. Наиболее известным является кучево-дождевой с mammatus , но mamma-образная форма также иногда наблюдается с перистыми, перисто-кучевыми, высококучевыми, высокослоистыми и слоисто-кучевыми облаками. [92]

Туба это облачная колонна, которая может висеть снизу кучевых или кучево-дождевых облаков. Недавно сформированная или плохо организованная колонна может быть сравнительно доброкачественной, но может быстро усилиться в воронкообразное облако или торнадо. [92] [95] [96]

Дугообразная структура представляет собой рулонное облако с неровными краями, прикрепленное к нижней передней части кучевых облаков или кучево-дождевых облаков, которое формируется вдоль переднего края линии шквала или грозового потока. [97] Большое дугообразное образование может иметь вид темной угрожающей арки. [92]

Всемирная метеорологическая организация (ВМО) официально признала несколько новых дополнительных признаков . Характерный признак fluctus может образовываться в условиях сильного сдвига атмосферного ветра, когда слоисто-кучевые, высококучевые или перистые облака распадаются на регулярно расположенные гребни. Этот вариант иногда неофициально называют облаком Кельвина-Гельмгольца (волновым) . Это явление также наблюдалось в облачных образованиях над другими планетами и даже в атмосфере Солнца. [98] Другой сильно возмущенной, но более хаотичной волнообразной облачной особенности, связанной со слоисто-кучевыми или высококучевыми облаками, было дано латинское название asperitas . Дополнительный признак cavum представляет собой круглое отверстие в виде полосы падения, которое иногда образуется в тонком слое переохлажденных высококучевых или перисто-кучевых облаков. Осенние полосы, состоящие из вирги или пучков перистых облаков, обычно видны под отверстием, когда кристаллы льда выпадают на более низкую высоту. Этот тип отверстий обычно больше типичных лакунозных отверстий. Мурус- образная структура представляет собой кучево-дождевую стену с опускающейся вращающейся основой облака, что может привести к образованию торнадо. Кауда- образная структура представляет собой хвостовое облако, которое простирается горизонтально от мурус-образного облака и является результатом подачи воздуха в шторм. [84]

Дополнительные облака

Дополнительные облачные образования, отделенные от основного облака, известны как дополнительные облака . [77] [87] [92] Более тяжелые осадочные облака, слоисто-дождевые, башеннообразные кучевые облака (cumulus congestus) и кучево-дождевые облака обычно образуют в осадках паннус , низкие разорванные облака родов и видов кучевых разорванных или слоистых разорванных облаков. [80]

Группа дополнительных облаков включает образования, которые связаны в основном с растущими вверх кучевообразными и кучево-дождевыми облаками свободной конвекции. Pileus — это шапочное облако, которое может образовываться над кучево-дождевым или большим кучевым облаком, [99] тогда как velum — это тонкая горизонтальная полоса, которая иногда образуется как фартук вокруг середины или перед родительским облаком. [92] Недавно Всемирной метеорологической организацией было официально признано дополнительное облако — flumen , также более неформально известное как bober's tail . Оно образуется теплым, влажным притоком сверхъячейковой грозы и может быть ошибочно принято за торнадо. Хотя flumen может указывать на риск торнадо, по внешнему виду оно похоже на pannus или scud cloud и не вращается. [84]

Материнские облака

Кучевые облака частично переходят в слоисто-кучевые, образовавшиеся из кучевых облаков, над портом Пирей в Греции.

Облака изначально формируются в чистом воздухе или становятся облаками, когда туман поднимается над уровнем поверхности. Род вновь образованного облака определяется в основном характеристиками воздушной массы, такими как стабильность и влажность. Если эти характеристики со временем меняются, род имеет тенденцию меняться соответственно. Когда это происходит, исходный род называется материнским облаком . Если материнское облако сохраняет большую часть своей первоначальной формы после появления нового рода, его называют облаком genitus . Одним из примеров этого является stratocumulus cumulogenitus , слоисто-кучевое облако, образованное частичным распространением кучевого типа при потере конвективной подъемной силы. Если материнское облако претерпевает полное изменение рода, оно считается облаком mutatus . [100]

Кучево-дождевое облако рассеивается в слоистые кучево-дождевые облака в сумерках

Другие облака генитаса и мутации

Категории genitus и mutatus были расширены и теперь включают определенные типы, которые не происходят из ранее существовавших облаков. Термин flammagenitus (лат. «созданное огнем») применяется к кучевым облакам congestus или кучево-дождевым облакам, которые образуются в результате крупномасштабных пожаров или вулканических извержений. Более мелкие низкоуровневые облака «pyrocumulus» или «fumulus», образованные ограниченной промышленной деятельностью, теперь классифицируются как cumulus homogenitus (лат. «созданное человеком»). Инверсионные следы, образованные выхлопными газами самолетов, летящих в верхнем слое тропосферы, могут сохраняться и распространяться в образования, напоминающие перистые облака, которые обозначаются как cirrus homogenitus . Если облако cirrus homogenitus полностью изменяется в любой из видов облаков высокого уровня, они называются cirrus, cirrostratus или cirrocumulus homomutatus . Stratus cataractagenitus (лат. «созданное катарактой») образуются из-за брызг водопадов. Silvagenitus (лат. «созданное лесом») — слоистые облака, которые образуются при добавлении водяного пара в воздух над пологом леса. [100]

Крупномасштабные узоры

Иногда определенные атмосферные процессы приводят к тому, что облака организуются в узоры, которые могут покрывать большие площади. Эти узоры обычно трудно распознать с уровня поверхности, и лучше всего их можно увидеть с самолета или космического корабля.

Слоисто-кучевые поля

Слоисто-кучевые облака могут быть организованы в «поля», которые принимают определенные специально классифицированные формы и характеристики. В целом, эти поля более различимы с больших высот, чем с уровня земли. Их часто можно встретить в следующих формах:

Вихревые улицы

Cirrus fibratus intortus в вечерних сумерках превратился в вихревую улицу Кармана.

Эти модели формируются из явления, известного как вихрь Кармана , который назван в честь инженера и специалиста по гидродинамике Теодора фон Кармана . [103] Облака, гонимые ветром, обычно среднеуровневые высококучевые или высокоуровневые перистые, могут образовывать параллельные ряды, которые следуют направлению ветра. Когда ветер и облака сталкиваются с возвышенными рельефными образованиями, такими как вертикально выступающие острова, они могут образовывать вихри вокруг высоких массивов суши, которые придают облакам скрученный вид. [104]

Распределение

Конвергенция вдоль зон низкого давления

Глобальный облачный покров, усредненный за октябрь 2009 года. Составной спутниковый снимок НАСА . [105]
Эти карты отображают долю площади Земли, которая была облачной в среднем в течение каждого месяца с января 2005 года по август 2013 года. Измерения были собраны с помощью спектрорадиометра с умеренным разрешением (MODIS) на спутнике Terra НАСА. Цвета варьируются от синего (без облаков) до белого (полностью облачно). Как и цифровая камера, MODIS собирает информацию в сетке ячеек, или пикселей. Облачная доля — это часть каждого пикселя, которая покрыта облаками. Цвета варьируются от синего (без облаков) до белого (полностью облачно). [106] ( нажмите для получения более подробной информации )

Хотя локальное распределение облаков может существенно зависеть от топографии, глобальная распространенность облачного покрова в тропосфере имеет тенденцию больше меняться в зависимости от широты . Она наиболее распространена в зонах низкого давления поверхностной тропосферной конвергенции, которые окружают Землю вблизи экватора и около 50-й параллели широты в северном и южном полушариях . [107] Адиабатические процессы охлаждения, которые приводят к образованию облаков посредством подъемных агентов, все связаны с конвергенцией; процессом, который включает горизонтальный приток и накопление воздуха в заданном месте, а также скорость, с которой это происходит. [108] Вблизи экватора повышенная облачность обусловлена ​​наличием внутритропической зоны конвергенции низкого давления (ITCZ), где очень теплый и нестабильный воздух способствует образованию в основном кучево-дождевых облаков. [109] Облака практически любого типа могут образовываться вдоль зон конвергенции средних широт в зависимости от стабильности и влажности воздуха. Эти внетропические зоны конвергенции заняты полярными фронтами , где воздушные массы полярного происхождения встречаются и сталкиваются с массами тропического или субтропического происхождения. [110] Это приводит к образованию погодообразующих внетропических циклонов , состоящих из облачных систем, которые могут быть стабильными или нестабильными в разной степени в зависимости от характеристик устойчивости различных воздушных масс, находящихся в конфликте. [111]

Расхождение вдоль зон высокого давления

Дивергенция противоположна конвергенции. В тропосфере Земли она включает горизонтальный отток воздуха из верхней части восходящего столба воздуха или из нижней части опускающегося столба, часто связанного с областью или хребтом высокого давления. [108] Облачность, как правило, меньше всего распространена вблизи полюсов и в субтропиках вблизи 30-й параллели, на севере и юге. Последние иногда называют конскими широтами . Наличие крупномасштабного субтропического хребта высокого давления по обе стороны от экватора уменьшает облачность на этих низких широтах. [112] Аналогичные закономерности наблюдаются также на более высоких широтах в обоих полушариях. [113]

Яркость, отражательная способность и окраска

Яркость или яркость облака определяется тем, как свет отражается, рассеивается и передается частицами облака. На его яркость также может влиять наличие дымки или фотометеоров, таких как гало и радуги. [114] В тропосфере плотные, глубокие облака демонстрируют высокую отражательную способность (70–95%) во всем видимом спектре . Крошечные частицы воды плотно упакованы, и солнечный свет не может проникнуть далеко в облако, прежде чем он отразится, придавая облаку его характерный белый цвет, особенно при просмотре сверху. [115] Капли облаков имеют тенденцию эффективно рассеивать свет, так что интенсивность солнечного излучения уменьшается с глубиной в газах. В результате основание облака может варьироваться от очень светлого до очень темно-серого в зависимости от толщины облака и того, сколько света отражается или передается обратно наблюдателю. Высокие тонкие тропосферные облака отражают меньше света из-за сравнительно низкой концентрации составляющих их кристаллов льда или переохлажденных капель воды, что приводит к слегка не совсем белому виду. Однако густое плотное облако из ледяных кристаллов выглядит ярко-белым с выраженным серым оттенком из-за его большей отражательной способности. [114]

По мере созревания тропосферного облака плотные капли воды могут объединяться, образуя более крупные капли. Если капли становятся слишком большими и тяжелыми, чтобы удерживаться наверху циркуляцией воздуха, они выпадут из облака в виде дождя . В результате этого процесса накопления пространство между каплями становится все больше, позволяя свету проникать глубже в облако. Если облако достаточно большое и капли внутри расположены достаточно далеко друг от друга, процент света, который попадает в облако, не отражается обратно, а поглощается, придавая облаку более темный вид. Простым примером этого является способность видеть дальше во время сильного дождя, чем в густом тумане. Этот процесс отражения / поглощения является причиной того, что цвет облаков варьируется от белого до черного. [116]

Яркие цвета облаков можно увидеть на любой высоте, причем цвет облака обычно совпадает с падающим светом. [117] Днем, когда солнце находится относительно высоко в небе, тропосферные облака обычно кажутся ярко-белыми сверху с различными оттенками серого снизу. Тонкие облака могут выглядеть белыми или приобретать цвет окружающей среды или фона. Красные, оранжевые и розовые облака появляются почти исключительно на восходе/закате и являются результатом рассеивания солнечного света атмосферой. Когда Солнце находится чуть ниже горизонта, облака низкого уровня серые, облака среднего уровня кажутся розовыми, а облака высокого уровня белые или почти белые. Облака ночью черные или темно-серые в безлунном небе или беловатые при освещении Луной. Они также могут отражать цвета больших пожаров, городских огней или полярных сияний, которые могут присутствовать. [117]

Кучево-дождевое облако, которое кажется имеющим зеленоватый или голубоватый оттенок, является признаком того, что оно содержит чрезвычайно большое количество воды; град или дождь, которые рассеивают свет таким образом, что придают облаку голубой цвет. Зеленая окраска происходит в основном в конце дня, когда солнце сравнительно низко в небе, а падающий солнечный свет имеет красноватый оттенок, который кажется зеленым при освещении очень высокого голубоватого облака. Штормы типа суперячейки, скорее всего, характеризуются этим, но любой шторм может выглядеть таким образом. Такая окраска не указывает напрямую на то, что это сильная гроза, она только подтверждает ее потенциал. Поскольку зеленовато-голубой оттенок означает обильное количество воды, сильный восходящий поток для ее поддержки, сильный ветер от выпадающего дождя и мокрый град; все элементы, которые повышают вероятность того, что он станет сильным, можно вывести из этого. Кроме того, чем сильнее восходящий поток, тем больше вероятность того, что шторм подвергнется торнадогенезу и вызовет большой град и сильный ветер. [118]

Желтоватые облака можно увидеть в тропосфере в конце весны и начале осени во время сезона лесных пожаров . Желтый цвет обусловлен наличием загрязняющих веществ в дыме. Желтоватые облака вызваны наличием диоксида азота и иногда видны в городских районах с высоким уровнем загрязнения воздуха. [119]

Эффекты

Кучевообразные облака над Свифтс-Крик , Австралия

Тропосферные облака оказывают многочисленные влияния на тропосферу и климат Земли. Прежде всего, они являются источником осадков, тем самым сильно влияя на распределение и количество осадков. Из-за их дифференциальной плавучести относительно окружающего безоблачного воздуха облака могут быть связаны с вертикальными движениями воздуха, которые могут быть конвективными, фронтальными или циклоническими. Движение направлено вверх, если облака менее плотные, потому что конденсация водяного пара выделяет тепло, нагревая воздух и тем самым уменьшая его плотность. Это может привести к движению вниз, потому что подъем воздуха приводит к охлаждению, которое увеличивает его плотность. Все эти эффекты тонко зависят от вертикальной температуры и структуры влажности атмосферы и приводят к значительному перераспределению тепла, которое влияет на климат Земли. [120]

Сложность и разнообразие облаков в тропосфере является основной причиной трудностей в количественной оценке воздействия облаков на климат и изменение климата. С одной стороны, белые вершины облаков способствуют охлаждению поверхности Земли, отражая коротковолновое излучение (видимое и ближнее инфракрасное) от Солнца, уменьшая количество солнечного излучения, которое поглощается поверхностью, увеличивая альбедо Земли . Большая часть солнечного света, который достигает земли, поглощается, нагревая поверхность, которая испускает излучение вверх на более длинных, инфракрасных, длинах волн. Однако на этих длинах волн вода в облаках действует как эффективный поглотитель. Вода реагирует, излучая, также в инфракрасном диапазоне, как вверх, так и вниз, а нисходящее длинноволновое излучение приводит к увеличению нагревания на поверхности. Это аналогично парниковому эффекту парниковых газов и водяного пара . [120]

Высокоуровневые типы родов особенно демонстрируют эту двойственность как с коротковолновым альбедо-охлаждением, так и с длинноволновым парниковым эффектом потепления. В целом, облака из ледяных кристаллов в верхней тропосфере (перистые облака) имеют тенденцию способствовать чистому потеплению. [121] [122] Однако охлаждающий эффект доминирует в облаках среднего и низкого уровня, особенно когда они образуются в обширных слоях. [121] Измерения NASA показывают, что в целом эффекты облаков низкого и среднего уровня, которые имеют тенденцию способствовать охлаждению, перевешивают нагревающие эффекты высоких слоев и переменные результаты, связанные с вертикально развитыми облаками. [121]

Насколько сложно оценить влияние нынешних облаков на текущий климат, настолько же проблематично предсказать изменения в облачных структурах и свойствах в будущем, более теплом климате, и как это повлияет на будущий климат. В более теплом климате больше воды будет поступать в атмосферу путем испарения с поверхности; поскольку облака образуются из водяного пара, можно было бы ожидать увеличения облачности. Но в более теплом климате более высокие температуры будут способствовать испарению облаков. [123] Оба эти утверждения считаются точными, и оба явления, известные как обратные связи облаков, обнаруживаются в расчетах климатических моделей. В широком смысле, если облака, особенно низкие, увеличиваются в более теплом климате, результирующий охлаждающий эффект приводит к отрицательной обратной связи в реакции климата на увеличение парниковых газов. Но если низкие облака уменьшаются или высокие облака увеличиваются, обратная связь положительная. Различное количество этих обратных связей является основной причиной различий в чувствительности климата текущих глобальных климатических моделей. Как следствие, многие исследования были сосредоточены на реакции низких и вертикальных облаков на изменение климата. Однако ведущие глобальные модели дают совершенно разные результаты: некоторые показывают увеличение низкой облачности, а другие — ее уменьшение. [124] [125] По этим причинам роль тропосферных облаков в регулировании погоды и климата остается основным источником неопределенности в прогнозах глобального потепления . [126] [127]

Стратосферная классификация и распределение

Линзовидные перламутровые облака над Антарктидой

Полярные стратосферные облака (PSC) находятся в самой нижней части стратосферы. Влага скудна над тропосферой, поэтому перламутровые и неперламутровые облака в этом диапазоне высот ограничены полярными регионами зимой, где и когда воздух самый холодный. [8]

PSC демонстрируют некоторые вариации в структуре в зависимости от их химического состава и атмосферных условий, но ограничены одним очень высоким диапазоном высот около 15 000–25 000 м (49 200–82 000 футов). Соответственно, они классифицируются как отдельный тип без дифференцированных уровней высоты, родовых типов, видов или разновидностей. Не существует латинской номенклатуры, подобной тропосферным облакам, но вместо этого используются описательные названия нескольких общих форм с использованием общепринятого английского языка. [8]

Переохлажденные азотнокислые и водные PSC, иногда называемые типом 1, обычно имеют слоистую форму, напоминающую перисто-слоистые облака или дымку, но поскольку они не заморожены в кристаллы, не показывают пастельных цветов перламутровых типов. Этот тип PSC был идентифицирован как причина истощения озонового слоя в стратосфере. [128] Замороженные перламутровые типы обычно очень тонкие с перламутровыми окрасками и волнистым цирриформным или линзовидным (стратокучевым) видом. Иногда их называют типом 2. [129] [130]

Мезосферная классификация и распределение

Серебристое облако над Эстонией

Серебристые облака являются самыми высокими в атмосфере и находятся вблизи верхней части мезосферы на высоте около 80–85 км (50–53 миль) или примерно в десять раз выше высоты тропосферных высоких облаков. [131] Они получили это латинское название из-за своего освещения после захода солнца и до восхода солнца. Обычно они имеют голубоватую или серебристо-белую окраску, которая может напоминать ярко освещенные перистые облака. Серебристые облака иногда могут приобретать более красный или оранжевый оттенок. [8] Они не являются достаточно распространенными или широко распространенными, чтобы оказывать существенное влияние на климат. [132] Однако увеличение частоты появления серебристых облаков с 19-го века может быть результатом изменения климата. [133]

Текущие исследования показывают, что конвективный подъем в мезосфере достаточно силен во время полярного лета , чтобы вызвать адиабатическое охлаждение небольшого количества водяного пара до точки насыщения. Это имеет тенденцию создавать самые низкие температуры во всей атмосфере чуть ниже мезопаузы. [132] Имеются доказательства того, что частицы дыма от сгоревших метеоров обеспечивают большую часть ядер конденсации, необходимых для образования серебристых облаков. [134]

Серебристые облака делятся на четыре основных типа в зависимости от физической структуры и внешнего вида. Завесы типа I очень тонкие и не имеют четко выраженной структуры, чем-то похожие на перисто-слоистые волокнистые облака или плохо выраженные перистые облака. [135] Полосы типа II представляют собой длинные полосы, которые часто встречаются группами, расположенными примерно параллельно друг другу. Обычно они более широко разнесены, чем полосы или элементы, наблюдаемые в перисто-кучевых облаках. [136] Волны типа III представляют собой структуры близко расположенных, примерно параллельных коротких полос, которые в основном напоминают перистые облака. [137] Вихри типа IV представляют собой частичные или, реже, полные кольца облаков с темными центрами. [138]

Distribution in the mesosphere is similar to the stratosphere except at much higher altitudes. Because of the need for maximum cooling of the water vapor to produce noctilucent clouds, their distribution tends to be restricted to polar regions of Earth. Sightings are rare more than 45 degrees south of the north pole or north of the south pole.[8]

Extraterrestrial

Составная черно-белая фотография, показывающая перистые облака над поверхностью Марса.
Cirrus clouds on Neptune, captured during Voyager 2's flyby

Cloud cover has been seen on most other planets in the Solar System. Venus's thick clouds are composed of sulfur dioxide (due to volcanic activity) and appear to be almost entirely stratiform.[139] They are arranged in three main layers at altitudes of 45 to 65 km that obscure the planet's surface and can produce virga. No embedded cumuliform types have been identified, but broken stratocumuliform wave formations are sometimes seen in the top layer that reveal more continuous layer clouds underneath.[140] On Mars, noctilucent, cirrus, cirrocumulus and stratocumulus composed of water-ice have been detected mostly near the poles.[141][142] Water-ice fogs have also been detected on Mars.[143]

Both Jupiter and Saturn have an outer cirriform cloud deck composed of ammonia,[144][145] an intermediate stratiform haze-cloud layer made of ammonium hydrosulfide, and an inner deck of cumulus water clouds.[146][147] Embedded cumulonimbus are known to exist near the Great Red Spot on Jupiter.[148][149] The same category-types can be found covering Uranus and Neptune, but are all composed of methane.[150][151][152][153] Saturn's moon Titan has cirrus clouds believed to be composed largely of methane.[154][155] The Cassini–Huygens Saturn mission uncovered evidence of polar stratospheric clouds[156] and a methane cycle on Titan, including lakes near the poles and fluvial channels on the surface of the moon.[157]

Some planets outside the Solar System are known to have atmospheric clouds. In October 2013, the detection of high altitude optically thick clouds in the atmosphere of exoplanet Kepler-7b was announced,[158][159] and, in December 2013, in the atmospheres of GJ 436 b and GJ 1214 b.[160][161][162][163]

In culture and religion

Joshua Passing the River Jordan with the Ark of the Covenant (1800) by Benjamin West, showing Yahweh leading the Israelites through the desert in the form of a pillar of cloud, as described in Exodus 13:21–22[164]

Clouds play an important mythical or non-scientific role in various cultures and religious traditions. The ancient Akkadians believed that the clouds (in meteorology, probably the supplementary feature mamma) were the breasts of the sky goddess Antu[165] and that rain was milk from her breasts.[165] In Exodus 13:21–22, Yahweh is described as guiding the Israelites through the desert in the form of a "pillar of cloud" by day and a "pillar of fire" by night.[164] In Mandaeism, uthras (celestial beings) are also occasionally mentioned as being in anana ("clouds"; e.g., in Right Ginza Book 17, Chapter 1), which can also be interpreted as female consorts.[166]

The Cloud of Unknowing is a 14th-century work of Christian mysticism that advises a contemplative practice focused on experiencing God through love and "unknowing."[citation needed]

In the ancient Greek comedy The Clouds, written by Aristophanes and first performed at the City Dionysia in 423 BC, the philosopher Socrates declares that the Clouds are the only true deities[167] and tells the main character Strepsiades not to worship any deities other than the Clouds, but to pay homage to them alone.[167] In the play, the Clouds change shape to reveal the true nature of whoever is looking at them,[168][167][169] turning into centaurs at the sight of a long-haired politician, wolves at the sight of the embezzler Simon, deer at the sight of the coward Cleonymus, and mortal women at the sight of the effeminate informer Cleisthenes.[168][169][167] They are hailed the source of inspiration to comic poets and philosophers;[167] they are masters of rhetoric, regarding eloquence and sophistry alike as their "friends".[167]

In China, clouds are symbols of luck and happiness.[170] Overlapping clouds (in meteorology, probably duplicatus clouds) are thought to imply eternal happiness[170] and clouds of different colors are said to indicate "multiplied blessings".[170]

Informal cloud watching or cloud gazing is a popular activity involving watching the clouds and looking for shapes in them, a form of pareidolia.[171][172]

See also

References

  1. ^ "Weather Terms". National Weather Service. Retrieved 21 June 2013.
  2. ^ Ceppi, Paulo; Williams, Ric (11 September 2020). "Why clouds are the missing piece in the climate change puzzle". The Conversation. Retrieved 21 January 2021.
  3. ^ Harper, Douglas (2012). "Cloud". Online Etymology Dictionary. Retrieved 13 November 2014.
  4. ^ "Cloud". The Free Dictionary. Farlex. Retrieved 13 November 2014.
  5. ^ a b c d e World Meteorological Organization, ed. (2017). "Cloud Identification Guide, International Cloud Atlas". Retrieved 4 April 2017.
  6. ^ a b E.C. Barrett and C.K. Grant (1976). "The identification of cloud types in LANDSAT MSS images". NASA. Retrieved 22 August 2012.
  7. ^ a b c d e f g h i j k World Meteorological Organization, ed. (2017). "Definitions, International Cloud Atlas". Retrieved 30 March 2017.
  8. ^ a b c d e f World Meteorological Organization, ed. (2017). "Upper atmospheric clouds, International Cloud Atlas". Retrieved 31 July 2017.
  9. ^ a b c de Valk, Paul; van Westhrenen, Rudolf; Carbajal Henken, Cintia (2010). "Automated CB and TCU detection using radar and satellite data: from research to application" (PDF). Archived from the original (PDF) on 16 November 2011. Retrieved 15 September 2011.
  10. ^ Frisinger, H. Howard (1972). "Aristotle and his Meteorologica". Bulletin of the American Meteorological Society. 53: 634. doi:10.1175/1520-0477(1972)053<0634:AAH>2.0.CO;2. ISSN 1520-0477.
  11. ^ a b World Meteorological Organization, ed. (1975). International Cloud Atlas, preface to the 1939 edition. Vol. I. Secretariat of the World Meteorological Organization. pp. IX–XIII. ISBN 978-92-63-10407-6. Retrieved 6 December 2014.
  12. ^ a b Bart van den Hurk; Eleanor Blyth (2008). "Global maps of Local Land-Atmosphere coupling" (PDF). KNMI. Archived from the original (PDF) on 25 February 2009. Retrieved 2 January 2009.
  13. ^ Nave, R. (2013). "Adiabatic Process". gsu.edu. Retrieved 18 November 2013.
  14. ^ a b c d Elementary Meteorology Online (2013). "Humidity, Saturation, and Stability". vsc.edu. Archived from the original on 2 May 2014. Retrieved 18 November 2013.
  15. ^ Horstmeyer, Steve (2008). "Cloud Drops, Rain Drops". Retrieved 19 March 2012.
  16. ^ Freud, E.; Rosenfeld, D. (2012). "Linear relation between convective cloud drop number concentration and depth for rain initiation". Journal of Geophysical Research. 117 (D2): n/a. Bibcode:2012JGRD..117.2207F. doi:10.1029/2011JD016457. ISSN 0148-0227.
  17. ^ Long, Michael J.; Hanks, Howard H.; Beebe, Robert G. (June 1965). "TROPOPAUSE PENETRATIONS BY CUMULONIMBUS CLOUDS". Archived from the original on 3 March 2016. Retrieved 9 November 2014.
  18. ^ Elementary Meteorology Online (2013). "Lifting Along Frontal Boundaries". vsc.edu. Retrieved 20 March 2015.
  19. ^ a b "Mackerel sky". Weather Online. Retrieved 21 November 2013.
  20. ^ a b Lee M. Grenci; Jon M. Nese (2001). A World of Weather: Fundamentals of Meteorology: A Text / Laboratory Manual (3 ed.). Kendall/Hunt Publishing Company. pp. 207–212. ISBN 978-0-7872-7716-1. OCLC 51160155.
  21. ^ a b Pidwirny, M. (2006). "Cloud Formation Processes" Archived 20 December 2008 at the Wayback Machine, chapter 8 in Fundamentals of Physical Geography, 2nd ed.
  22. ^ About NLCs, Polar Mesospheric Clouds, from Atmospheric optics
  23. ^ Ackerman, p. 109
  24. ^ Glossary of Meteorology (2009). "Radiational cooling". American Meteorological Society. Archived from the original on 12 May 2011. Retrieved 27 December 2008.
  25. ^ Fovell, Robert (2004). "Approaches to saturation" (PDF). University of California in Los Angeles. Archived from the original (PDF) on 25 February 2009. Retrieved 7 February 2009.
  26. ^ Pearce, Robert Penrose (2002). Meteorology at the Millennium. Academic Press. p. 66. ISBN 978-0-12-548035-2.
  27. ^ JetStream (2008). "Air Masses". National Weather Service. Archived from the original on 24 December 2008. Retrieved 2 January 2009.
  28. ^ National Weather Service Office (2009). "Virga and Dry Thunderstorms". Spokane, Washington: National Oceanic and Atmospheric Administration. Retrieved 2 January 2009.
  29. ^ Reiley, H. Edward; Shry, Carroll L. (2002). Introductory horticulture. Cengage Learning. p. 40. ISBN 978-0-7668-1567-4.
  30. ^ World Meteorological Organization, ed. (2017). "Principles, International Cloud Atlas". Retrieved 9 May 2017.
  31. ^ E.C. Barrett; C.K. Grant (1976). "The identification of cloud types in LANDSAT MSS images". NASA. Retrieved 22 August 2012.
  32. ^ a b c Pilotfriend, ed. (2016). "Meteorology". Pilotfriend. Retrieved 19 March 2016.
  33. ^ NASA, ed. (2015). "Stratiform or Stratus Clouds". Archived from the original on 23 January 2015. Retrieved 23 January 2015.
  34. ^ a b World Meteorological Organization, ed. (2017). "Cirrus, International Cloud Atlas". Retrieved 16 May 2017.
  35. ^ Laufersweiler, M. J.; Shirer, H. N. (1995). "A theoretical model of multi-regime convection in a stratocumulus-topped boundary layer". Boundary-Layer Meteorology. 73 (4): 373–409. Bibcode:1995BoLMe..73..373L. doi:10.1007/BF00712679. S2CID 123031505.
  36. ^ World Meteorological Organization, ed. (2017). "Altocumulus Castellanus, International Cloud Atlas". Retrieved 4 April 2017.
  37. ^ "Cumulus clouds". Weather. USA Today. 16 October 2005. Retrieved 16 October 2012.
  38. ^ Stommel, H. (1947). "Entrainment of Air into a Cumulus Cloud". Journal of Meteorology. 4 (3): 91–94. Bibcode:1947JAtS....4...91S. doi:10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.
  39. ^ Mossop, S. C.; Hallett, J. (1974). "Ice Crystal Concentration in Cumulus Clouds: Influence of the Drop Spectrum". Science. 186 (4164): 632–634. Bibcode:1974Sci...186..632M. doi:10.1126/science.186.4164.632. PMID 17833720. S2CID 19285155.
  40. ^ JetStream (2008). How to read weather maps. Archived 1 January 2015 at the Wayback Machine National Weather Service. Retrieved on 16 May 2007.
  41. ^ World Meteorological Organization, ed. (2017). "Appearance of Clouds, International Cloud Atlas". Retrieved 26 April 2017.
  42. ^ a b World Meteorological Organization, ed. (1995). "WMO cloud classifications" (PDF). Archived (PDF) from the original on 26 February 2005. Retrieved 1 February 2012.
  43. ^ a b c Colorado State University Dept. of Atmospheric Science, ed. (2015). "Cloud type identification by satellites" (PDF). Colorado State University. Archived (PDF) from the original on 11 April 2006. Retrieved 30 December 2015.
  44. ^ Vincent J. Schaefer (October 1952). "Cloud Forms of the Jet Stream". Tellus. 5 (1): 27–31. Bibcode:1953Tell....5...27S. doi:10.1111/j.2153-3490.1953.tb01032.x.
  45. ^ World Meteorological Organization, ed. (2017). "Cirrocumulus, International Cloud Atlas". Retrieved 16 May 2017.
  46. ^ Miyazaki, R.; Yoshida, S.; Dobashi, Y.; Nishita, T. (2001). "A method for modeling clouds based on atmospheric fluid dynamics". Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001. p. 363. CiteSeerX 10.1.1.76.7428. doi:10.1109/PCCGA.2001.962893. ISBN 978-0-7695-1227-3. S2CID 6656499.
  47. ^ World Meteorological Organization, ed. (2017). "Cirrostratus, International Cloud Atlas". Retrieved 16 May 2017.
  48. ^ World Meteorological Organization, ed. (1975). Altostratus, International Cloud Atlas. Vol. I. Secretariat of the World Meteorological Organization. pp. 35–37. ISBN 978-92-63-10407-6. Retrieved 26 August 2014.
  49. ^ World Meteorological Organization, ed. (2017). "Altocumulus, International Cloud Atlas". Retrieved 16 May 2017.
  50. ^ World Meteorological Organization, ed. (2017). "Ac Compared With Cc, International Cloud Atlas". Retrieved 6 April 2018.
  51. ^ Met Office, ed. (2017). "Mid Level Clouds – Altocumulus". Retrieved 6 April 2018.
  52. ^ World Meteorological Organization, ed. (2017). "Altostratus, International Cloud Atlas". Retrieved 16 May 2017.
  53. ^ World Meteorological Organization, ed. (2017). "Stratocumulus, International Cloud Atlas". Archived from the original on 10 May 2017. Retrieved 16 May 2017.
  54. ^ Met Office, ed. (2016). "Stratocumulus". Retrieved 10 April 2018.
  55. ^ a b c World Meteorological Organization, ed. (2017). "Cumulus, International Cloud Atlas". Retrieved 16 May 2017.
  56. ^ World Meteorological Organization, ed. (2017). "Stratus, International Cloud Atlas". Retrieved 16 May 2017.
  57. ^ World Meteorological Organization, ed. (2017). "Drizzle, International Cloud Atlas". Retrieved 9 April 2018.
  58. ^ World Meteorological Organization, ed. (2017). "Snow Grains, International Cloud Atlas". Retrieved 9 April 2018.
  59. ^ Colorado State University, ed. (2000). "Stratus and Fog". Retrieved 9 April 2018.
  60. ^ Met Office, ed. (2017). "Difference Between Mist and Fog". Retrieved 9 April 2018.
  61. ^ World Meteorological Organization, ed. (2017). "Nimbostratus, International Cloud Atlas". Retrieved 16 May 2017.
  62. ^ a b c d Clouds Online (2012). "Cloud Atlas". Retrieved 1 February 2012.
  63. ^ a b c Koermer, Jim (2011). "Plymouth State Meteorology Program Cloud Boutique". Plymouth State University. Archived from the original on 1 July 2014. Retrieved 1 September 2015.
  64. ^ American Meteorological Society (2012). "Glossary of Meteorology". Retrieved 9 January 2014.
  65. ^ Ackerman, p. 118
  66. ^ Houze, Robert A. (1994). Cloud Dynamics. Academic Press. p. 211. ISBN 978-0-08-050210-6.
  67. ^ Hatheway, Becca (2009). "Cloud Types". Windows to the Universe, US National Earth Science Teachers Association (NESTA). Retrieved 15 September 2011.
  68. ^ "cloud: Classification of Clouds". Infoplease.com.
  69. ^ World Meteorological Organization, ed. (2017). "Cumulonimbus, International Cloud Atlas". Retrieved 16 May 2017.
  70. ^ Scott A (2000). "The Pre-Quaternary history of fire". Palaeogeogr Palaeoclimatol Palaeoecol. 164 (1–4): 281–329. Bibcode:2000PPP...164..281S. doi:10.1016/S0031-0182(00)00192-9.
  71. ^ National Center for Atmospheric Research (2008). "Hail". University Corporation for Atmospheric Research. Archived from the original on 27 May 2010. Retrieved 18 July 2009.
  72. ^ Fujita, Ted (1985). "The Downburst, microburst and macroburst". SMRP Research Paper 210.
  73. ^ Renno, N. O. (2008). "A thermodynamically general theory for convective vortices" (PDF). Tellus A. 60 (4): 688–699. Bibcode:2008TellA..60..688R. doi:10.1111/j.1600-0870.2008.00331.x. hdl:2027.42/73164. Archived (PDF) from the original on 2 May 2019.
  74. ^ a b c d e f g World Meteorological Organization, ed. (2017). "Species, International Cloud Atlas". Retrieved 2 June 2017.
  75. ^ a b World Meteorological Organization, ed. (2017). "Nebulosus, International Cloud Atlas". Retrieved 2 June 2017.
  76. ^ a b World Meteorological Organization, ed. (2017). "Fibratus, International Cloud Atlas". Retrieved 2 June 2017.
  77. ^ a b c d e f g h Boyd, Sylke (2008). "Clouds – Species and Varieties". University of Minnesota. Archived from the original on 30 December 2010. Retrieved 4 February 2012.
  78. ^ World Meteorological Organization, ed. (2017). "Stratiformis, International Cloud Atlas". Retrieved 2 June 2017.
  79. ^ World Meteorological Organization, ed. (2017). "Species Fractus, International Cloud Atlas". Retrieved 5 April 2018.
  80. ^ a b World Meteorological Organization, ed. (2017). "Accessory Cloud Pannus, International Cloud Atlas". Retrieved 5 April 2018.
  81. ^ Stephen F. Corfidi; Sarah J. Corfidi; David M Schultz (2008). "Elevated Convection and Castellanus: Ambiguities, Significance, and Questions". Weather and Forecasting. 23 (6): 1282. Bibcode:2008WtFor..23.1280C. doi:10.1175/2008WAF2222118.1.
  82. ^ World Meteorological Organization, ed. (2017). "Species Castellanus, International Cloud Atlas". Retrieved 5 April 2018.
  83. ^ World Meteorological Organization, ed. (2017). "Species Floccus, International Cloud Atlas". Retrieved 5 April 2018.
  84. ^ a b c Sutherland, Scott (23 March 2017). "Cloud Atlas leaps into 21st century with 12 new cloud types". The Weather Network. Pelmorex Media. Archived from the original on 31 May 2022. Retrieved 24 March 2017.
  85. ^ Abbie Thomas (7 August 2003). "Soaring the glory". ABC Science. Australian Broadcasting Corporation. Retrieved 30 August 2014.
  86. ^ a b c d World Meteorological Organization, ed. (2017). "Varieties, International Cloud Atlas". Retrieved 1 February 2018.
  87. ^ a b c d e f Aerographer/Meteorology (2012). "Cloud Variety". meteorologytraining.tpub.com. Archived from the original on 21 December 2012. Retrieved 2 July 2012.
  88. ^ "Sculpting La Silla's Skies". www.eso.org. ESO. Retrieved 23 August 2014.
  89. ^ Cumulus-skynews (2013). "Clouds: Their curious natures". Retrieved 26 August 2014.
  90. ^ Pretor-Pinney, Gavin (2007). The Cloudspotter's Guide: The Science, History, and Culture of Clouds. Penguin Group. p. 20. ISBN 978-1-101-20331-6.
  91. ^ World Meteorological Organization, ed. (2017). "Variety Radiatus, International Cloud Atlas". Retrieved 5 April 2018.
  92. ^ a b c d e f g h World Meteorological Organization, ed. (2017). "Features, International Cloud Atlas". Retrieved 1 February 2018.
  93. ^ Dunlop 2003, pp. 77–78
  94. ^ "Cumulonimbus Incus". Universities Space Research Association. 5 August 2009. Retrieved 23 October 2012.
  95. ^ Aerographer/Meteorology (2012). "Roll cloud formation on cumulonimbus". Archived from the original on 18 May 2013. Retrieved 5 July 2012.
  96. ^ Dunlop 2003, p. 79
  97. ^ Ludlum, David McWilliams (2000). National Audubon Society Field Guide to Weather. Alfred A. Knopf. p. 473. ISBN 978-0-679-40851-2. OCLC 56559729.
  98. ^ Fox, Karen C. (30 December 2014). "NASA's Solar Dynamics Observatory Catches "Surfer" Waves on the Sun". NASA-The Sun-Earth Connection: Heliophysics. NASA. Archived from the original on 20 November 2021. Retrieved 20 November 2014.
  99. ^ Garrett, T. J.; Dean-Day, J.; Liu, C.; Barnett, B.; Mace, G.; Baumgardner, D.; Webster, C.; Bui, T.; Read, W.; Minnis, P. (2006). "Convective formation of pileus cloud near the tropopause". Atmospheric Chemistry and Physics. 6 (5): 1185–1200. Bibcode:2006ACP.....6.1185G. doi:10.5194/acp-6-1185-2006. hdl:2060/20080015842. S2CID 14440075.
  100. ^ a b World Meteorological Organization, ed. (2017). "Mother clouds, International Cloud Atlas". Retrieved 2 June 2017.
  101. ^ Kore.n, I.; Feingold, G. (2013). "Adaptive behavior of marine cellular clouds". Scientific Reports. 3: 2507. Bibcode:2013NatSR...3E2507K. doi:10.1038/srep02507. PMC 3753593. PMID 23978979.
  102. ^ "Cloud Formations off the West Coast of South America". NASA Earth Observatory. 5 October 2005. Retrieved 29 March 2013.
  103. ^ Theodore von Kármán, Aerodynamics. McGraw-Hill (1963): ISBN 978-0-07-067602-2. Dover (1994): ISBN 978-0-486-43485-8.
  104. ^ National Aeronautics and Space Administration, ed. (2001). "Vortex Streets". Retrieved 5 April 2018.
  105. ^ For a larger image see this image Archived 29 May 2010 at the Wayback Machine at earthobservatory.nasa.gov
  106. ^ "Cloud Fraction : Global Maps". nasa.gov. Retrieved 26 October 2014.
  107. ^ Kondratʹev, Kirill Iakovlevich (2006). Atmospheric aerosol properties: formation, processes and impacts. Springer. p. 403. ISBN 978-3-540-26263-3.
  108. ^ a b Wei-hung, Leung (2010). "Meteorology Basics: Convergence and Divergence". Hong Kong Observatory. Archived from the original on 26 October 2019. Retrieved 8 December 2014.
  109. ^ "Inter-Tropical Convergence Zone". JetStream – Online School for Weather. NOAA. 24 October 2007. Retrieved 4 June 2009.
  110. ^ Kushnir, Yochanan (2000). "The Climate System: General Circulation and Climate Zones". Archived from the original on 22 August 2004. Retrieved 13 March 2012.
  111. ^ Williams, Jack (27 June 1997). "Extratropical storms are major weather makers". USA Today. Retrieved 13 March 2012.
  112. ^ Cai, Wenju; Van Rensch, Peter; Cowan, Tim (2011). "Subtropical Ridge". Journal of Climate. 24 (23): 6035. Bibcode:2011JCli...24.6035C. doi:10.1175/2011JCLI4149.1. S2CID 59145525.
  113. ^ PMF IAS, ed. (2015). "Atmospheric Pressure Belts and Wind Systems PMF IAS Pressure Belts". Retrieved 5 April 2018.
  114. ^ a b World Meteorological Organization, ed. (2017). "Luminance, International Cloud Atlas". Retrieved 10 May 2017.
  115. ^ Increasing Cloud Reflectivity Archived 11 May 2013 at the Wayback Machine, Royal Geographical Society, 2010.
  116. ^ Hileman, B. (1995). "Clouds absorb more solar radiation than researchers previously thought". Chemical & Engineering News. 73 (7): 33. doi:10.1021/cen-v073n007.p033.
  117. ^ a b World Meteorological Organization, ed. (2017). "Coloration, International Cloud Atlas". Retrieved 13 May 2017.
  118. ^ University of Wisconsin-Madison-News, ed. (2007). "Curiosities-Green sky before tornado". Retrieved 17 January 2015.
  119. ^ Nagle, Garrett (1998). "10. Cities and Air Pollution". Hazards. Nelson Thornes. p. 101. ISBN 978-0-17-490022-1.
  120. ^ a b "Cloud Climatology". International Satellite Cloud Climatology Program. National Aeronautics and Space Administration. Retrieved 12 July 2011.
  121. ^ a b c Ackerman, p. 124
  122. ^ Franks, F. (2003). "Nucleation of ice and its management in ecosystems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 361 (1804): 557–74. Bibcode:2003RSPTA.361..557F. doi:10.1098/rsta.2002.1141. PMID 12662454. S2CID 25606767.
  123. ^ Wolchover, Natalie (25 February 2019). "A World Without Clouds". Quanta Magazine.
  124. ^ Bony, S. (2005). "Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models". Geophysical Research Letters. 32 (20): L20806. Bibcode:2005GeoRL..3220806B. doi:10.1029/2005GL023851.
  125. ^ Medeiros, B.; Stevens, B.; Held, I. M.; Zhao, M.; Williamson, D. L.; Olson, J. G.; Bretherton, C. S. (2008). "Aquaplanets, Climate Sensitivity, and Low Clouds". Journal of Climate. 21 (19): 4974–4991. Bibcode:2008JCli...21.4974M. CiteSeerX 10.1.1.620.6314. doi:10.1175/2008JCLI1995.1.
  126. ^ Forster, P.; Storelvmo, T.; Armour, K.; Collins, W. (2021). "Chapter 7: The Earth's energy budget, climate feedbacks, and climate sensitivity" (PDF). IPCC AR6 WG1 2021. From pp 1022: "The cloud feedback could either amplify or offset some of the future warming and has long been the biggest source of uncertainty in climate projections."
  127. ^ "Will Clouds Speed or Slow Global Warming?". National Science Foundation. Archived from the original on 14 November 2011. Retrieved 23 October 2012.
  128. ^ World Meteorological Organization, ed. (2017). "Nitric acid and water PSC, International Cloud Atlas". Retrieved 3 April 2019.
  129. ^ World Meteorological Organization, ed. (2017). "Nacreous PSC, International Cloud Atlas". Retrieved 3 April 2019.
  130. ^ Les Cowley (2011). "Nacreous clouds". atoptics.co.uk. Retrieved 31 January 2012.
  131. ^ Michael Gadsden; Pekka Parviainen (September 2006). Observing Noctilucent Clouds (PDF). International Association of Geomagnetism & Aeronomy. p. 9. Archived from the original (PDF) on 31 October 2008. Retrieved 31 January 2011.
  132. ^ a b Turco, R. P.; Toon, O. B.; Whitten, R. C.; Keesee, R. G.; Hollenbach, D. (1982). "Noctilucent clouds: Simulation studies of their genesis, properties and global influences". Planetary and Space Science. 30 (11): 1147–1181. Bibcode:1982P&SS...30.1147T. doi:10.1016/0032-0633(82)90126-X.
  133. ^ Project Possum, ed. (2017). "About Noctiluent Clouds". Retrieved 6 April 2018.
  134. ^ Fox, Karen C. (2013). "NASA Sounding Rocket Observes the Seeds of Noctilucent Clouds". Archived from the original on 24 September 2013. Retrieved 1 October 2013.
  135. ^ World Meteorological Organization, ed. (2017). "Type I Veils, International Cloud Atlas". Retrieved 18 July 2019.
  136. ^ World Meteorological Organization, ed. (2017). "Type II Bands, International Cloud Atlas". Retrieved 18 July 2019.
  137. ^ World Meteorological Organization, ed. (2017). "Type III Billows, International Cloud Atlas". Retrieved 18 July 2019.
  138. ^ World Meteorological Organization, ed. (2017). "Type IV Whirls, International Cloud Atlas". Retrieved 18 July 2019.
  139. ^ Bougher, Stephen Wesley; Phillips, Roger (1997). Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press. pp. 127–129. ISBN 978-0-8165-1830-2.
  140. ^ Shiga, David (2006). "Mysterious waves seen in Venus's clouds". New Scientist. Retrieved 5 November 2013.
  141. ^ SPACE.com staff (28 August 2006). "Mars Clouds Higher Than Any on Earth". SPACE.com.
  142. ^ "Clouds Move Across Mars Horizon". Phoenix Photographs. National Aeronautics and Space Administration. 19 September 2008. Archived from the original on 2 June 2016. Retrieved 15 April 2011.
  143. ^ Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "NASA SP-441: Viking Orbiter Views of Mars". National Aeronautics and Space Administration. Retrieved 26 January 2013.
  144. ^ Phillips, Tony (20 May 2010). "Big Mystery: Jupiter Loses a Stripe". Nasa Headline News – 2010. National Aeronautics and Space Administration. Archived from the original on 20 April 2011. Retrieved 15 April 2011.
  145. ^ Dougherty, Michele; Esposito, Larry (November 2009). Saturn from Cassini-Huygens (1 ed.). Springer. p. 118. ISBN 978-1-4020-9216-9. OCLC 527635272.
  146. ^ Ingersoll, A.P.; Dowling, T.E.; Gierasch, P.J.; Orton, G.S.; Read, P.L.; Sanchez-Lavega, A.; Showman, A.P.; Simon-Miller, A.A.; Vasavada, A.R. "Dynamics of Jupiter's Atmosphere" (PDF). Lunar & Planetary Institute. Archived (PDF) from the original on 18 April 2007. Retrieved 1 February 2007.
  147. ^ Monterrey Institute for Research in Astronomy (11 August 2006). "Saturn". Retrieved 31 January 2011.
  148. ^ "Thunderheads on Jupiter". Jet Propulsion Laboratory. National Aeronautics and Space Administration. Retrieved 26 January 2013.
  149. ^ Minard, Anne (14 October 2008). "Mysterious Cyclones Seen at Both of Saturn's Poles". National Geographic News. National Geographic. Archived from the original on 16 October 2008. Retrieved 26 January 2013.
  150. ^ Taylor Redd, Nola (2012). "Neptune's Atmosphere: Composition, Climate, & Weather". Space.com. Retrieved 5 November 2013.
  151. ^ Boyle, Rebecca (18 October 2012). "Check Out The Most Richly Detailed Image Ever Taken of Uranus". Popular Science.
  152. ^ Irwin, Patrick (July 2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (1 ed.). Springer. p. 115. ISBN 978-3-540-00681-7.
  153. ^ Elkins-Tanton, Linda T. (2006). Uranus, Neptune, Pluto, and the Outer Solar System. New York: Chelsea House. pp. 79–83. ISBN 978-0-8160-5197-7.
  154. ^ Athéna Coustenis; F.W. Taylor (2008). Titan: Exploring an Earthlike World. World Scientific. pp. 154–155. ISBN 978-981-270-501-3.
  155. ^ "Surprise Hidden in Titan's Smog: Cirrus-Like Clouds". Mission News. National Aeronautics and Space Administration. 3 February 2011. Archived from the original on 16 April 2011. Retrieved 16 April 2011.
  156. ^ Elizabeth Zubritsky (2016). "NASA Scientists find impossible cloud on titan". Retrieved 1 November 2016.
  157. ^ National Aeronautics and Space Administration, ed. (2008). "NASA Confirms Liquid Lake on Saturn Moon, Cassini Mission News". Archived from the original on 9 January 2019. Retrieved 5 April 2018.
  158. ^ Chu, Jennifer (2 October 2013). "Scientists generate first map of clouds on an exoplanet". MIT. Retrieved 2 January 2014.
  159. ^ Demory, B. O.; De Wit, J.; Lewis, N.; Fortney, J.; Zsom, A.; Seager, S.; Knutson, H.; Heng, K.; Madhusudhan, N.; Gillon, M.; Barclay, T.; Desert, J. M.; Parmentier, V.; Cowan, N. B. (2013). "Inference of Inhomogeneous Clouds in an Exoplanet Atmosphere". The Astrophysical Journal. 776 (2): L25. arXiv:1309.7894. Bibcode:2013ApJ...776L..25D. doi:10.1088/2041-8205/776/2/L25. S2CID 701011.
  160. ^ Harrington, J.D.; Weaver, Donna; Villard, Ray (31 December 2013). "Release 13-383 – NASA's Hubble Sees Cloudy Super-Worlds With Chance for More Clouds". NASA. Retrieved 1 January 2014.
  161. ^ Moses, J. (2014). "Extrasolar planets: Cloudy with a chance of dustballs". Nature. 505 (7481): 31–32. Bibcode:2014Natur.505...31M. doi:10.1038/505031a. PMID 24380949. S2CID 4408861.
  162. ^ Knutson, H. A.; Benneke, B. R.; Deming, D.; Homeier, D. (2014). "A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b". Nature. 505 (7481): 66–68. arXiv:1401.3350. Bibcode:2014Natur.505...66K. doi:10.1038/nature12887. PMID 24380953. S2CID 4454617.
  163. ^ Kreidberg, L.; Bean, J. L.; Désert, J. M.; Benneke, B. R.; Deming, D.; Stevenson, K. B.; Seager, S.; Berta-Thompson, Z.; Seifahrt, A.; Homeier, D. (2014). "Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b". Nature. 505 (7481): 69–72. arXiv:1401.0022. Bibcode:2014Natur.505...69K. doi:10.1038/nature12888. PMID 24380954. S2CID 4447642.
  164. ^ a b Gertz, Jan Christian (2014). "The Miracle at the Sea: Remarks on the Recent Discussion about Origin and Composition of the Exodus Narrative". The Book of Exodus: Composition, Reception, and Interpretation. Leiden, The Netherlands: Brill. p. 111. ISBN 978-90-04-28266-7.
  165. ^ a b Nemet-Nejat, Karen Rhea (1998). Daily Life in Ancient Mesopotamia. Greenwood. p. 182. ISBN 978-0313294976.
  166. ^ Gelbert, Carlos (2011). Ginza Rba. Sydney: Living Water Books. ISBN 9780958034630.
  167. ^ a b c d e f Strauss, Leo (1966). Socrates and Aristophanes. Chicago, Illinois: The University of Chicago Press. pp. 17–21, 29. ISBN 978-0-226-77719-1.
  168. ^ a b Roche, Paul (2005). Aristophanes: The Complete Plays: A New Translation by Paul Roche. New York City, New York: New American Library. pp. 149–150. ISBN 978-0-451-21409-6.
  169. ^ a b Robson, James (2017). Grig, Lucy (ed.). Popular Culture in the Ancient World. Cambridge, England: Cambridge University Press. p. 81. ISBN 978-1-107-07489-7.
  170. ^ a b c Ding, Ersu (2010). Parallels, Interactions, and Illuminations: Traversing Chinese and Western Theories of the Sign. Toronto, Canada: University of Toronto Press. p. 118. ISBN 978-1-4426-4048-1.
  171. ^ "Cloudgazing". Discover the Forest. Archived from the original on 4 October 2023. Retrieved 23 November 2020.
  172. ^ "Do You See Faces In The Clouds? The Science of Pareidolia". 20 July 2015.

Bibliography

External links